Effect of Silver Nitrate Concentration on Production of Silver Nanoparticles Using Polygonum Minus Extract and Analysis of Their Antimicrobial Property

  • Normawati @ Nadzirah Abu Samah
  • Abdul Latif Ibrahim
  • Salina Muhamad
Keywords: Silver Nanoparticles, Polygonum minus, green synthesis, antimicrobial


Green synthesis is the ability of organisms and organic compounds to reduce metal ions and stabilise them into nanoparticles (NPs). Among all metal nanoparticles, silver nanoparticles (AgNPs) have much attention due to the surface plasmon resonance (SPR), which can be easily observed by UV–visible spectrophotometer. In the present study, AgNPs were synthesized using Polygonum minus extract as a reducing agent and aqueous silver nitrate as a precursor. This study aims to investigate effect of silver nitrate (AgNO3) concentrations (0.001 M, 0.01 M and 0.1 M) on the production of AgNPs as well as an antimicrobial activity of silver nanoparticles (AgNPs). Based on the observation, the colorless reaction mixture slowly changed from yellowish green to reddish brown and further confirmed by surface plasmonic resonance (SPR) band at 420 - 440 nm using UV–visible spectroscopy indicating of reduction of silver ion after several minutes of reaction. It was found that increased concentration of AgNO3 resulted in increasing reaction time, production and decrease size of AgNPs. The morphological changes of bacterial cells treated with AgNPs were observed by FE-SEM and showed that the AgNPs has good antimicrobial properties against microorganisms. Thus, the ability of AgNPs to release Ag ions is a key to their antimicrobial.


Abdelghany, T. M., Al-Rajhi, A. M. H., Al Abboud, M. A., AlAwlaqi, M. M., Magdah, A. G., Helmy, E. A. M. & Mabrouk, A. S. (2017). Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A Review. BioNanoScience, 8, 5–16.
Ahmad, R., Sahidin, I., Taher, M., Low, C., Noor, N. M., Sillapachaiyaporn, C., Chuchawankul, S., Sarachana, T., Tencormnao, T., Iskandar, F., Rajab, N. F. & Baharum, S. N. (2018). Polygonumins A, a newly isolated compound from the stem of Polygonum minus Huds with potential medicinal activities. Scientific reports, 8(1), 4202.
Ajayi, E. & Afolayan, A. (2017). Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv. Nat. Sci: Nanosci. Nanotechnol., 8, 015017.
Ali, Z. A., Roslan, M. A., Yahya, R., Wan Sulaiman, W. Y. & Puteh, R. (2015). Eco-friendly synthesis of silver nanoparticles and its larvicidal property against fourth instar larvae of Aedes aegypti. IET Nanobiotechnol., 11(2), 152-156.
Ali, Z. A., Yahya, R., Sekaran, S. D., & Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Advances in Material Science and Engineering, 2016, 1-6.
Anigol, L. B. Charantimath, J. S., & Gurubasavaraj, P. M. (2017). Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry. Organic and Medicinal Chemistery International Journal, 3, 1-5.
Anjum, S., Abbasi, B. H. & Shinwari, Z. K. (2016). Plant-mediated green synthesis of silver nanoparticles for biomedical applications: Challenges and opportunities. Pak. J. Bot., 48(4), 1731-1760.
Benakashani, F., Allafchian, A. R. & Jalali, S. A. H. (2016). Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala International Journal of Modern Science, 2, 251-258.
Benakashani, F., Allafchian, A. R. & Jalali, S. A. H. (2016). Biosynthesis Of Silver Nanoparticles Using Capparis spinosa L. Leaf Extract And Their Antibacterial Activity. Karbala International Journal of Modern Science 2, 251 – 258.
Bonnia, N. N., Kamaruddin, M. S., Nawawi, M. H., Ratim, S., Azlina, H. N. & Ali, E. S. (2016). Green biosynthesis of silver nanoparticles using ‘Polygonum Hydropiper’ and study its catalytic degradation of methylene blue. Procedia Chemistry, 19, 594 – 602.
Cedillo-Alvarez, C. P., Gupta, D., & Chauhan, P. (2017). Green synthesis of silver nanoparticles involving extract of plants of different taxonomic groups. J. Nanomed Res., 5(2), 00110.
Guilger-Casagrande, M. & Lima, R. (2019) Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol., 7, 287.
Gurunathan, S., Han, J. W., Kwon, D.-N. & Kim, J. – H. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters, 9, 373.
Hassan, M., Walter, M., & Moseler, M. (2014). Interactions of polymers with reduced graphene oxide: van der waals binding energies of benzene on graphene with defects. Phys. Chem. Phys., 16(1), 33-37.
Hassim, N., Markom, M., Anuar, N., Dewi, K. H., Baharum, S., & Noor, N. (2015). Antioxidant and antibacterial assays on Polygonum minus extracts: different extraction methods. International Journal of Chemical Engineering, 2015, 1-10.
Hassim, N., Markom, M., Anur, N., & Baharum, S. N. (2014). Solvent selection in extraction of essential oil and bio active compounds from Polygonum minus. Journal of Applied Sciences, 14(13), 1440-1444.
Htwe, Y. Z. N., Chowa, W. S., Sudab, Y. & Mariatti, M. (2019). Effect of silver nitrate concentration on the production of silver nanoparticles by green method. Materials Today: Proceedings, 17, 568–573.
Hyllested, J. A. E., Palanco, M. E., Hagen, N., Mogensen, K. B., & Kneipp, K. (2015). Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents. Beilstein J. Nanotechnol., 6, 293-299.
Iravani, S. & Varma, R. S. (2020). Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustainable Chem. Eng., 8, 5395−5409.
Khalil, M. M. H., Ismail, E. H.,El-Baghdady, K. Z & Mohamed, D. (2014). Green synthesis of silver nanoparticles using Olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7, 1131–1139.
Khan, M. Z. H., Tarek, F. K., Nuzat, M., Momin, M. A., & Hasan, M. R. (2017). Rapid biological synthesis of silver nanoparticles from Octimum sanctum and their characterization. Journal of Nanoscience.
Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., & Lee, D. S. (2011). Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology and Biotechnology, 39(1), 77-85.
Lakkappa, B. A., Jasmith, S. C. & Prabhuodeyara, M. G. (2017). Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry. Organic and Medicinal Chem IJ, 3(5), 555622.
Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19, 311-317.
Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35 – 44.
Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P. & Franklin, G. (2018). Review : Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11, 940.
Mohamad, Z. A., Johari, M. A., Mitra, A., Puteri, S. A. R., & Onn, H. (2017). Anti-proliferative, in vitro antioxidant, and cellular antioxidant activities of the leaf extracts from Polygonum minus huds: Effects of solvent polarity. International Journal of Food Properties, 20, sup1, 846-862.
Motitswe, M. G., & Fayemi, O. E. (2019). Characterization of Green Synthesized Silver Nanoparticles Doped in Polyacrylonitrile Nanofibers. American Journal of Nanoscience & Nanotechnology Research, 7, 32-48.
Nurain, A., Noriham, A., Zainon, M. N., Khairusy Syakirah, Z. & Wan Saifatul Syida, W. K. (2012). Phytochemical constituents and in vitro bioactivity of ethanolic aromatic herb extracts. Sains Malaysiana. 41,1437–1444.
Patil, M. P., Singh, R. D., Koli, P. B., Patil, K. T., Jagdale, B. S., Tipare, A. R. & Kim, G. – D. (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog., 121, 184 – 189.
Qader, S. W., Abdulla, M. A., Chua, L. S., Salehhuddin, H. (2012). Potential bioactive property of Polygonum minus Huds (kesum) review. Scientific Research and Essays. 7, 90–93.
Rai, M. K., Deshmukh, S., Ingle, A. & Gade, A. (2012). Silver Nanoparticles: The Powerful Nanoweapon Against Multidrug-Resistant Bacteria. J. Appl. Microbiol., 112(5), 841 - 852.
Rao, M. V., Kishore, M. & Rao, Y. H. (2016). Green nanoparticles synthesized from roots of Datura metel and evaluation of antimicrobial activity. Journal of Pharmacy Research, 10(11),730-734.
Rasheed, T., Bilal, M., Iqbal, H. M. N. & Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B Biointerfaces, 158, 408-415.
Sana, S. S. & Dogiparthi, L. K. (2018). Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Mater. Lett., 226, 47-51.
Seifipour, R., Nozari, M. & Pishkar, L. (2020). Green synthesis of silver nanoparticles using Tragopogon Collinus leaf extract and study of their antibacterial effects. Journal of Inorganic and Organometallic Polymers and Materials ,30, 8.
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414.
Verma, A. & Mehata, M. S. (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences, 9(1), 109-115.
How to Cite
Samah, N. @ N., Ibrahim, A., & Muhamad, S. (2021). Effect of Silver Nitrate Concentration on Production of Silver Nanoparticles Using Polygonum Minus Extract and Analysis of Their Antimicrobial Property. Selangor Science & Technology Review (SeSTeR), 5(3), 26-40. Retrieved from http://sester.journals.unisel.edu.my/ojs/index.php/sester/article/view/225
Articles in English