The Sentiment Analysis of Public Opinion in Indonesia about Argentine as Champions of FIFA World Cup 2022

  • Muhammad Iqbal University of Amikom Yogyakarta
Keywords: Fifa Word Cup 2022, Sentiment Analysis, Vader Sentiment, Lexicon Based

Abstract

Football is one of the most popular games in the world. The FIFA World Cup Championship, the biggest competition in football, is contested every four years. 32 teams from all over the world participated in the 2022 FIFA World Cup, which was held in 2022. In Indonesia, there were 126 million active users daily on average in the fourth quarter of 2018. This study helps categorize tweets against feedback given to indihome products. Sentiment analysis can be used to reveal public opinion on an issue, service satisfaction, policies, cyber-bullying, stock price forecasting, and competition analysis. This research aims to analyze the sentiments of Twitter users on the topic of Argentina as Champions of the FIFA World Cup 2022. Using the Vader sentiment library and the Lexicon-based method, sentiments are generated. 54.41% of the results of the sentiment analysis have a positive value, 23.53% have a neutral value, and 22.06% have a negative value.

References

Anggraini, Novita, and Heri Suroyo. 2019. “Comparison of Sentiment Analysis against Digital Payment ‘T-Cash and Go-Pay’ in Social Media Using Orange Data Mining.” Journal of Information Systems and Informatics 1(2): 152–63.
Astrada Fathurrahman, Raihan. 2021. “Analisis Sentimen Pasar Saham Dari Berita Keuangan Menggunakan Algoritma Pencocokan String.” (13519113). https://ekonomi.kompas.com/read/2017/11/03/221703226/kenaikan-.
Atmoko, Ervan Yudhi. 2020. “Resmi Digelar Mulai 21 November 2022, Ini Jadwal Piala Dunia 2022 Qatar.” Kompas. https://www.kompas.com/sports/read/2020/07/15/21193568/resmi-digelar-mulai-21-november-2022-ini-jadwal-piala-dunia-2022-qatar?page=all#:~:text=Resmi Digelar Mulai 21 November 2022%2C Ini Jadwal Piala Dunia 2022 Qatar,-Kompas.com - 15&text=KOMPAS.com - Ind.
Fathullah, Nadhif Sanggara, Yuita Arum Sari, and Putra Pandu Adikara. 2020. “Analisis Sentimen Terhadap Rating Dan Ulasan Film Dengan Menggunakan Metode Klasifikasi Naïve Bayes Dengan Fitur Lexicon-Based.” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 4(2): 590–93. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6987.
Forsey, Caroline. 2021. “What Is Twitter and How Does It Work?” https://blog.hubspot.com/marketing/what-is-twitter.
Hidayat, Erwin Yudi, Raindy Wicaksana Hardiansyah, and Affandy Affandy. 2021. “Analisis Sentimen Twitter Untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network.” Jurnal Nasional Teknologi dan Sistem Informasi 7(2): 108–18.
K. M. Azharul Hasan, Sajal Das Shovon, Naimul Hoque Joy, Md. Saiful Islam. 2021. “Automatic Labeling of Twitter Data for Developing COVID-19 Sentiment Dataset.” 2021 5th International Conference on Electrical Information and Communication Technology, EICT 2021, 2021.
Melani, Birdyne Yanuar, Septiyawan Rosetya Wardhana, Dian Puspita Hapsari, and Nanang Fakhrur Rozi. 2019. “Analisa Kualitas Fitur Aplikasi Mobile Dengan Menggunakan Pendekatan Sentimen Grey.” Prosiding Seminar Nasional Sains dan Teknologi Terapan 1(1): 415–20.
Prabowo, Wahyu Adi, and Citra Wiguna. 2021. “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM.” Jurnal Media Informatika Budidarma 5(1): 149.
Pratomo, Yudha. 2019. “Untuk Pertama Kali , Twitter Ungkap Jumlah Pengguna Harian.” Kompas.com: 1–6. https://tekno.kompas.com/read/2019/02/09/11340027/untuk-pertama-kali-twitter-ungkap-jumlah-pengguna-harian.
Yuzi, Hilman Syahrul, Subhan Afifi, and Yenni Sri Utami. 2020. “Analisis Naratif Pemberitaan Prancis Sebagai Juara Piala Dunia 2018 Di Harian Kompas.” Jurnal Ilmu Komunikasi 17(1): 85.
Published
2023-12-31
How to Cite
Iqbal, M. (2023). The Sentiment Analysis of Public Opinion in Indonesia about Argentine as Champions of FIFA World Cup 2022. Selangor Science & Technology Review (SeSTeR), 7(2), PREPRINT. Retrieved from https://sester.journals.unisel.edu.my/ojs/index.php/sester/article/view/313