Enhancement of C. vulgaris Species Growth Using Aquaculture Sludge Extracts

  • Kasturi Arumugam Faculty of Engineering & Life Sciences, Department of Science & Biotechnology, University Selangor, Bestari Jaya, 45600, Selangor, Malaysi
  • Mohd Fadzli Ahmad
  • Nor Suhaila Yaacob
Keywords: C. vulgaris, extraction parameters, sludge extract, specific growth rate


High-value microalgae have many useful substances that can be used for many applications. This study established the effect of the sludge extract (SE) on C. vulgaris species. Five different autoclave extraction parameters were assessed on SEs, i.e. 1-h at 105 °C, 2-h at 105 °C, 1-h at 121 °C, 2-h at 121 °C, and 24-h at room temperature (natural extraction). The SE obtained from the Sabak Bernam (SB) and Kota Puteri (KP) was supplemented with Conway media and checked using microplate incubation technique. Microalgae cultivation in control (media) and enriched (media + SE) samples were incubated for nine days at 25 °C with 33.75 μmol photons m-2 s-2 light intensity on a 12-hour light: 12 h dark cycle. C. vulgaris (TRG 2A) and C. vulgaris (TRG6-B01) showed better growth in modified SE compared to control yet no significance differences (p > 0.05) were observed. The specific growth rate (SGR) of C. vulgaris (TRG 2A) showed significant differences (p < 0.05) between SB and KP SE while, C. vulgaris (TRG6-B01) showed no significant differences (p > 0.05). The organic matter contents in the SE and autoclave at extended high temperatures influences the microalgae growth.


Amini, H., Wang, L., & Shahbazi, A. (2016). Effects of harvesting cell density, medium depth and environmental factors on biomass and lipid productivities of Chlorella vulgaris grown in swine wastewater. Chemical Engineering Science, 152, 403-412. https://doi.org/10.1016/j.ces.2016.06.025.
Andreotti, V., Solimeno, A., Chindris, A., Marazzi, F., & García, J. (2019). Growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater: numerical simulation with the BIO_ALGAE model. Water, Air, & Soil Pollution, 230(3), 1-14. https://doi.org/10.1007/s11270-019-4122-0
Arumugam, K., Ahmad, M. F., Yaacob, N. S., Ikram, W. M., Maniyam, M. N., Abdullah, H., ... & Kuwahara, V. S. (2020). Enhancement of targeted microalgae species growth using aquaculture sludge extracts. Heliyon, 6(7), e04556. https://doi.org/10.1016/j.heliyon.2020.e04556
Chew, K. W., Chia, S. R., Show, P. L., Ling, T. C., Arya, S. S., & Chang, J. S. (2018). Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource technology, 267, 356-362. https://doi.org/10.1016/j.biortech.2018.07.069
da Silva, P. P., & Ribeiro, L. A. (2019). Assessing Microalgae Sustainability as a Feedstock for Biofuels. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts (pp. 373-392). Woodhead Publishing.
Dourou, M., Dritsas, P., Baeshen, M. N., Elazzazy, A., Al-Farga, A., & Aggelis, G. (2020). High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS microbiology letters, 367(12), fnaa081. https://doi.org/10.1093/femsle/fnaa081
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. Z., ... & Cai, H. W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological engineering, 92, 55-61. https://doi.org/10.1016/j.ecoleng.2016.03.046
Guldhe, A., Ansari, F. A., Singh, P., & Bux, F. (2017). Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 99, 47-53.
Hwang, J. H., Church, J., Lee, S. J., Park, J., & Lee, W. H. (2016). Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environmental Engineering Science, 33(11), 882-897. https://doi.org/10.1089/ees.2016.0132
Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x
Khatoon, H., Banerjee, S., Syakir Syahiran, M., Mat Noordin, N. B., Munafi Ambok Bolong, A., & Endut, A. (2016). Re-use of aquaculture wastewater in cultivating microalgae as live feed for aquaculture organisms. Desalination and Water Treatment, 57(60), 29295-29302. https://doi.org/10.1080/19443994.2016.1156030
Kong, W., Yang, S., Wang, H., Huo, H., Guo, B., Liu, N., ... & Niu, S. (2020). Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. Journal of Applied Phycology, 1-11. https://doi.org/10.1007/s10811-020-02089-1
Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, 197-207. https://doi.org/10.1016/j.renene.2016.11.032.
Nasir, N. M., Bakar, N. S. A., Lananan, F., Hamid, S. H. A., Lam, S. S., & Jusoh, A. (2015). Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresource technology, 190, 492-498. https://doi.org/10.1016/j.biortech.2015.03.023
Paul Abishek, M., Patel, J., & Prem Rajan, A. (2014). Algae oil: a sustainable renewable fuel of future. Biotechnology research international, 2014.
Ramaraj, R., Tsai, D. D., & Chen, P. H. (2010). Algae growth in natural water resources. Journal of Soil and Water Conservation, 42(4), 439-450.
Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256
Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of microalgae and cyanobacteria: effect of operating conditions on growth and biomass composition. Molecules, 25(12), 2834. https://doi.org/10.3390/molecules25122834
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722.
Subramaniyam, V., Subashchandrabose, S. R., Ganeshkumar, V., Thavamani, P., Chen, Z., Naidu, R., & Megharaj, M. (2016). Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresource technology, 211, 698-703. https://doi.org/10.1016/j.biortech.2016.03.154B
Valverde-Pérez, B., Ramin, E., Smets, B. F., & Plósz, B. G. (2015). EBP2R–an innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation. Water research, 68, 821-830. https://doi.org/10.1016/j.watres.2014.09.027
Wang, L., Addy, M., Lu, Q., Cobb, K., Chen, P., Chen, X., ... & Ruan, R. (2019). Cultivation of Chlorella vulgaris in sludge extracts: Nutrient removal and algal utilization. Bioresource technology, 280, 505-510. https://doi.org/10.1016/j.biortech.2019.02.017
How to Cite
Arumugam, K., Ahmad, M., & Yaacob, N. (2021). Enhancement of C. vulgaris Species Growth Using Aquaculture Sludge Extracts. Selangor Science & Technology Review (SeSTeR), 5(3), 1-9. Retrieved from http://sester.journals.unisel.edu.my/ojs/index.php/sester/article/view/221
Articles in English