Electric Vehicle: Fuel Cells or Batteries?

  • Mohd Fuad Ibrahim
  • Ahmad Fadzil Ismail
  • Kamarul Hisyam Osman @ Othman
Keywords: Battery, Electric Vehicle, Fossil Fuel, Fuel Cells

Abstract

It will take millions of years to produce fossil fuels and existing stock is consumed relatively quicker than that. Electric vehicles (EVs) are the human race's best chance to replace internal combustion engines (ICE). There are two most popular technologies in EV which are battery electric vehicles (BEV) and fuel cells electric vehicles (FCEV). BEV and FCEV are basically almost the same where BEV must be charged to stored electrical power and the electrical power will run the motor. However, FCEV uses hydrogen to power its electrical motor. BEV and FCEV have their own advantages and disadvantages, although BEV has a slightly higher advantage edge where electrical generation to power BEV is already in place compared to FCEV where we are in the phase to figure it out the cheapest and the most environmentally friendly method to produce hydrogen.

References

Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021). Environmental aspects of fuel cells: A review. Science of the Total Environment, 752, 141803. https://doi.org/10.1016/j.scitotenv.2020.141803
Asdrubali, F., Baldinelli, G., D’Alessandro, F., & Scrucca, F. (2015). Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renewable and Sustainable Energy Reviews, 42, 1113–1122. https://doi.org/10.1016/j.rser.2014.10.082
Belkin, A. P., & Solovev, D. B. (2019). The Prospects of Chemical Fuel Cells for Private Generation. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019. https://doi.org/10.1109/FarEastCon.2019.8934387
Chen, X., Shen, W., Vo, T. T., Cao, Z., & Kapoor, A. (2012). An overview of lithium-ion batteries for electric vehicles. 10th International Power and Energy Conference, IPEC 2012, 230–235. https://doi.org/10.1109/ASSCC.2012.6523269
Collins, L. (2020). A wake-up call on green hydrogen: the amount of wind and solar needed is immense. https://www.rechargenews.com/transition/a-wake-up-call-on-green-hydrogentheamount-of-wind-and-solar-needed-is-immense/2-1-776481
D’Allegro, J. (2019). Elon Musk says the tech is ‘mind-bogglingly stupid,’ but hydrogen cars may yet threaten Tesla. https://www.cnbc.com/2019/02/21/musk-calls-hydrogen-fuel-cells-stupidbuttech-may-threaten-tesla.html
Daniel, C. (2008). Materials and processing for lithium-ion batteries. Jom, 60(9), 43–48. https://doi.org/10.1007/s11837-008-0116-x
Daud, W. R. W., Ahmad, A., Mohamed, A. B., Kamarudin, S. K., Koh, J. I. S., Rasid, N., Daud, Z. B., Hasran, U. A., Samuel, N., & Abdullah, M. I. (2017). The Blueprint for Fuel Cell Industries in Malaysia.
Dispenza, G., Sergi, F., Napoli, G., Randazzo, N., Di Novo, S., Micari, S., Antonucci, V., & Andaloro, L. (2017). Development of a solar powered hydrogen fueling station in smart cities applications. International Journal of Hydrogen Energy, 42(46), 27884–27893. https://doi.org/10.1016/j.ijhydene.2017.07.047
Dogan, B., & Erol, D. (2019). The Future of Fossil and Alternative Fuels Used in Automotive Industry. 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2019 - Proceedings. https://doi.org/10.1109/ISMSIT.2019.8932925
Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764. https://doi.org/10.1016/j.rser.2014.07.113
Ellis, M. W., Von Spakovsky, M. R., & Nelson, D. J. (2001). Fuel Cell Systems: Efficient, Flexible Energy Conversion for the 21st Century. Proceedings of the IEEE, 89(12), 1808–1817. https://doi.org/10.1109/5.975914
FuelCellsWorks. (2019). Malaysia: Six New Hydrogen Stations to be Built. https://fuelcellsworks.com/news/malaysia-six-new-hydrogen-stations-to-be-built/
Gnann, T. (2015). Market diffusion of plug-in electric vehicles and their charging infrastructure (Issue December). FRAUNHOFER VERLAG. https://www.researchgate.net/publication/287197119
Gnann, T., Funke, S., Jakobsson, N., Plötz, P., Sprei, F., & Bennehag, A. (2018). Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transportation Research Part D: Transport and Environment, 62, 314–329. https://doi.org/10.1016/j.trd.2018.03.004
Gouldson, A., Colenbrander, S., Sudmant, A., McAnulla, F., Kerr, N., Sakai, P., Hall, S., Papargyropoulou, E., & Kuylenstierna, J. (2015). Exploring the economic case for climate action in cities. Global Environmental Change, 35, 93–105. https://doi.org/10.1016/j.gloenvcha.2015.07.009
Hardman, S., Jenn, A., Tal, G., Axsen, J., Beard, G., Daina, N., Figenbaum, E., Jakobsson, N., Jochem, P., Kinnear, N., Plötz, P., Pontes, J., Refa, N., Sprei, F., Turrentine, T., & Witkamp, B. (2018). A review of consumer preferences of and interactions with electric vehicle charging infrastructure. In Transportation Research Part D: Transport and Environment (Vol. 62). Elsevier. https://doi.org/10.1016/j.trd.2018.04.002
Horie, H., Abe, T., Kinoshita, T., & Shimoida, Y. (2007). A study on an advanced lithium-ion battery system for EVs. Electric Drive Transportation Association - 23rd Int. Electric Vehicle Symposium and Exposition 2007, EVS 2007 (Battery, Hybrid, Fuel Cell) Conf. Proc. - Sustainability: The Future of Transportation, 4(2), 2127–2136.
Kayfeci, M., Keçebaş, A., & Bayat, M. (2019). Hydrogen production. In Solar Hydrogen Production: Processes, Systems and Technologies. https://doi.org/10.1016/B978-0-12-814853-2.00003-5
Lim, A. (2020). 2021 Toyota Mirai launched in Japan, priced fr. RM277k. https://paultan.org/2020/12/09/2021-toyota-mirai-launched-in-japan-priced-fr-rm277k/
Lucid Air. (2021). 099074c4f874c11c7dffd5ff497828a97f79d41d @ www.lucidmotors.com. https://www.lucidmotors.com/charging
Mallick, R. K., Thombre, S. B., & Shrivastava, N. K. (2016). Vapor feed direct methanol fuel cells (DMFCs): A review. Renewable and Sustainable Energy Reviews, 56, 51–74. https://doi.org/10.1016/j.rser.2015.11.039
Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen fuel cell vehicles; Current status and future prospect. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112296
Miao, Y., Hynan, P., Von Jouanne, A., & Yokochi, A. (2019). Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12(6), 1–20. https://doi.org/10.3390/en12061074
Mizuno, F., Yada, C., & Iba, H. (2014). Solid-State Lithium-Ion Batteries for Electric Vehicles. In Lithium-Ion Batteries: Advances and Applications. Elsevier. https://doi.org/10.1016/B978-0444-59513-3.00012-1
Muthukumar, M., Rengarajan, N., Velliyangiri, B., Omprakas, M. A., Rohit, C. B., & Raja, U. K. (2021). The development of fuel cell electric vehicles - A review. Materials Today: Proceedings, 45(xxxx), 1181–1187. https://doi.org/10.1016/j.matpr.2020.03.679
Ortiz-Rivera, E. I., Reyes-Hernandez, A. L., & Febo, R. A. (2007). Understanding the history of fuel cells. 2007 IEEE Conference on the History of Electric Power, HEP 2007, 2(2), 117–122. https://doi.org/10.1109/HEP.2007.4510259
Saw, L. H., Ye, Y., & Tay, A. A. O. (2016). Integration issues of lithium-ion battery into electric vehicles battery pack. Journal of Cleaner Production, 113, 1032–1045. https://doi.org/10.1016/j.jclepro.2015.11.011
Sazali, N., Salleh, W. N. W., Jamaludin, A. S., & Razali, M. N. M. (2020). New perspectives on fuel cell technology: A brief review. Membranes, 10(5). https://doi.org/10.3390/membranes10050099
Schreiber, D. A., & Berge, Z. L. (2018). Futures Thinking And Organizational Policy: Case studies for managing rapid change in technology, globalization and workforce diversity. In Futures Thinking and Organizational Policy: Case Studies for Managing Rapid Change in Technology, Globalization and Workforce Diversity. Springer International Publishing. https://doi.org/10.1007/978-3-319-94923-9
Sun, X., Li, Z., Wang, X., & Li, C. (2019). Technology development of electric vehicles: A review. Energies, 13(1), 1–29. https://doi.org/10.3390/en13010090
Thananusak, T., Rakthin, S., Tavewatanaphan, T., & Punnakitikashem, P. (2017). Factors affecting the intention to buy electric vehicles: Empirical evidence from Thailand. International Journal of Electric and Hybrid Vehicles, 9(4), 361–381. https://doi.org/10.1504/IJEHV.2017.089875 U.S. Department of Energy. (2020). Energy Efficiency and Renewable Energy Alternative Fuels Data Center. https://afdc.energy.gov/fuels/hydrogen_basics.html
United States Environmental Protection Agency. (2021). topten @ www.fueleconomy.gov. https://www.fueleconomy.gov/feg/topten.jsp?year=2021&action=All
Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Kumar, G., Dai-Viet, N. V., & Rajesh Banu, J. (2021). Techno-economic assessment of various hydrogen production methods – A review. Bioresource Technology, 319(August 2020), 124175. https://doi.org/10.1016/j.biortech.2020.124175
Zhang, Q., Li, C., & Wu, Y. (2017). Analysis of Research and Development Trend of the Battery Technology in Electric Vehicle with the Perspective of Patent. Energy Procedia, 105, 4274–4280. https://doi.org/10.1016/j.egypro.2017.03.918
Published
2022-01-19
How to Cite
Ibrahim, M. F., Ismail, A. F., & Osman @ Othman, K. H. (2022). Electric Vehicle: Fuel Cells or Batteries?. Selangor Science & Technology Review (SeSTeR), 5(5), 78-88. Retrieved from https://sester.journals.unisel.edu.my/ojs/index.php/sester/article/view/254