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Abstract 

 

A free convection thermophoretic hydromagnetic flow over a radiate isothermal inclined plate with heat source or 

heat sink effect is considered. The effects of the thermophoretic parameter and internal heat generation or 

absorption for both suction and injection cases are discussed. Hence, the transformed boundary layer equation and 

the new boundary equation are solved by Adomian-Padé technique. 
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INTRODUCTION 

 

 Thermophoresis has been the subject of abundant studies for many years (Derjaguin, 1965; Rana; 

Bhargava, 2002). It describes the migration of suspended small micron sized particles in a non-

isothermal gas to the direction with decreasing thermal gradient. The velocity acquired by the particle is 

known as thermophoretic velocity while the force experienced by the suspended particles due to the 

temperature differences is known as thermophoretic force (Hayat & Qasim, 2010; Kandasamy et al., 

2010). The earliest studies on the role of thermopohoresis in laminar flow over a horizontal plate with 

analysis on cold and hot plate conditions is given by Goren (1977). The study of magnetohydrodynamic 

(MHD) flow and heat transfer are deemed as of great interest due to the effect of magnetic field on the 

boundary layer flow control. The effect of suction and injection along a flat plate for free convection 

have attract interest of many researcher due to the double impacts projected with respect to heat 

transfer.  

 The study on MHD flow over an inclined plate with thermophoresis and heat source has never been 

considered before. In this paper, we will extend the previous on a steady MHD flow with 

thermophoresis over a permeable radiate inclined plate by Alam et al. (2009) to include the heat source 

or sink parameter. We also compared the analytical solution by Noor et al. (2012) with employed 

Adomian decomposition method aided by Padé approximation to treat boundary condition at infinity. 

The values of skin friction, wall heat transfer, and wall deposition flux are also tabulated.  

 

 

MATHEMATICAL MODEL 

 

 Consider a two-dimensional steady laminar flow of an incompressible electrically conducting fluid 

over a continuously moving semi-infinite inclined permeable plate with an acute angle α  to the 

vertical. With the −x axis measured along the plate, a magnetic field 
( )xB

 is applied in the 
−y direction that is normal to the flow direction. Suction or injection is imposed on the permeable 
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plate. The temperature of the surface is held uniform at wT  which is higher than the ambient 

temperature ∞T . The species concentration at the surface is maintained uniform at 
0=wC  while the 

ambient fluid concentration is assumed to be ∞C . The presence of uniform internal heat source or sink 

and thermophoresis are considered to study the variation of velocity, heat transfer and concentration 

deposition on the inclined surface.     

 Here u  and v  are the velocity components in the −x and −y direction respectively, ν  is the 

kinematic viscosity, g  is the acceleration due to the gravity, β  is the volumetric coefficient of the 

thermal expansion,  , wTT and ∞T  are the temperatures of thermal boundary layer fluid, the inclined 

plate and the free stream respectively, σ  is the electrical conductivity, gλ  is the fluid thermal 

conductivity, 
ρ

 is the fluid density, pc  is the specific heat at constant pressure, rq  is the radiative heat 

flux in the 
−y

direction, 
( )xQ

 is the internal heating, 
µ

 is the dynamic viscosity, D  is the molecular 

diffusivity of the species concentration and TV  is the thermophoretic velocity. 

 Here u  and v  are the velocity components in the −x and 
−y

direction respectively, ν  is the 

kinematic viscosity, g  is the acceleration due to the gravity, β  is the volumetric coefficient of the 

thermal expansion,  , wTT and ∞T  are the temperatures of thermal boundary layer fluid, the inclined 

plate and the free stream respectively, σ  is the electrical conductivity, gλ  is the fluid thermal 

conductivity, 
ρ

 is the fluid density, pc  is the specific heat at constant pressure, rq  is the radiative heat 

flux in the −y direction, 
( )xQ  is the internal heating, µ  is the dynamic viscosity, D  is the molecular 

diffusivity of the species concentration and TV  is the thermophoretic velocity.      
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The boundary conditions corresponding for the model are, 

 

 ( ) ,0at      ,  ,  ,0 ===== yCCTTxvvUu www   

 

 ,  as    ,  ,0 ∞→=== ∞∞ yCCTTu  

 

where 0U  is the uniform plate velocity and 
( )xvw  represents fluid suction or injection on the porous 

surface. 

 

 The governing equations (2)-(4) can be transformed to a set of nonlinear ordinary differential 

equations by introducing the following non-dimensional variables.  
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where 
ϕ

 is the stream function that satisfies the continuity equation (1) with 
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 Using equations (8) and (9), the following similarity equations with the corresponding boundary 

conditions are obtained. 

 

 ,0cos =′−ϕγθ−′′+′′′ fMfff  

 

( ) ( ) ( )( ) ,02343
22 =δθ+′+′′+θ′+θ′′+ fMEfEfRPR ccr  

 

 ( ) ,0=φθ′′τ−φ′θ′τ−+φ′′ cc SfS  

 

subject to, 

 

 0,at    0  ,1  ,1  , =η=φ=θ=′= fff w  

 

 ,  as  1  ,0  ,0 ∞→η=φ=θ=′f  

 

where γ  is the local buoyancy parameter, xGr
 is the local Grashof number, xRe

 is the local Reynolds 

number, M is the Hartmann number, R is the conduction-radiation parameter, rP  is Prandtl number, 

cE  is Eckert number, cS  is the Schmidt number, wf  is the permeability of the porous surface with 

positive value indicates suction while negative value indicates injection and δ  is the internal heat 

source or sink defined respectively. 
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SOLUTION APPROACH  

 

 In this section, we shall demonstrate the simple application of the Adomian Decomposition Method 

(ADM) to obtain an approximate solution of equations (10)-(14). First, write equations (10)-(12) in the 

operator form, 

 

 ,cos1 fffMfL ′′−ϕγθ−′=  

 

( ) ( )( ),2
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 ( ),3 φ′−φ′θ′τ+φθ′′τ=φ fSL c  

 

where 
33

1 ηddL =
, 

22

2 ηddL =
 and 

22

3 ηddL =
. Applying the inverse operator 
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n n n

dtdtdtL
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n n
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 and 

( ) ( )∫ ∫=−
n n

dtdtL
0 0

1

3   ..

 to the left sides of equations (18)-

(20) and by employing the boundary condition (13)-(14) gives, 
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where 
( )01 f ′′=α

, 
( )02 θα ′=

 and 
( )03 φα ′=

 are to be determined. The nonlinear terms in equations 

(21)-(23) can be decomposed as (Adomian (1994)), 
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Adopting the algorithm for the Adomian polynomials proposed by Zhu et.al (2005), it can be shown 

that, 
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 Substituting equations (24)-(25) into equations (21)-(23) and adopting the modified technique of 

Wazwaz (2006), the simple recursive Adomian algorithm for generating the individual terms of the 

series solution of equations (10)-(14) are, 
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 The algorithms (28)-(36) are coded using the numerical algebraic package in Maple 15 associate with 

built in Padé approximants procedure with significant digits 16. To achieve reasonable accuracy we 

obtain the 20-term approximation of 
( )ηf

, 
( )ηθ

 and 
( )ηφ

, where the first four terms are given as 

follows, 

 

( ) ,0 η=ηf  

 

( ) ,10 =ηθ  

 

( ) ,30 ηα=ηφ  
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( ) ,57652.018170.182300.0
32

1 η+η−η−=ηθ  

 

( ) ,35213.053204.024690.0
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654

2 η−η+η=ηθ  
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( ) ,01476.000913.001096.0
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3 η+η+η−=ηf  

 

( ) ,00533.000413.005625.0
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3 η−η−η=ηθ  

 

( ) .12445.009946.0
6

3
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33 ηα+ηα−=ηφ  

 

 

RESULTS AND DISCUSSION 

 

The value of skin friction
( )0f ′′

 are compared with previous studies (Cortell, 2007; Javed et al., 2011; 

Noor et al.,2012) and depicted in Table 1. From Table 1, it shows a good agreement with the previous 

study. Table 2 showed the comparison between different order of Padé approximants for several wf . It 

was found that, the skin friction is higher for the case of injection 
5.0−=wf  on the inclined permeable 

surface. However, the heat transfer from the surface and the deposition flux are greater for the suction 

when 
5.0=wf . For Table 3, also showed the comparison between different order of Padé 

approximants for several value of δ . Here 1−=δ  represents heat sink, 0=δ  is without heat source 

or sink whereas 1=δ represents heat source. From these tables, it is clearly demonstrate that the 

convergence of solution are better for higher order of approximations.  

 

Table 1:  The comparison of 
( )0f ′′

 value for 
0=== wfMγ

 

 

Cortell (2007) Javed et.al. (2011) Noor et.al. (2012) ADM-Padé (Present) 

0.6275 0.6275 0.6275 0.6275 

 

(42) 

(41) 

(44) 

(45) 

(46) 

(47) 

(48) 

(43) 
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Table 2: Numerical values of 
( )0f ′′ , 

( )0θ ′−  and 
( )0φ′   for ,5.0,7.0,10 ===γ MPr  

             
1   1,6.0,1.0,6,1  and =δ=τ==π=β= cc SER

 
 

 
wf  

[ ]5,5
 

[ ]6,6
 

[ ]7,7
 

[ ]8,8
 

 

( )0f ′′
 

-0.5 3.39923 3.39924 3.39924 3.39924 

0 3.40785 3.40786 3.40786 3.40786 

0.5 3.31518 3.31519 3.31519 3.31519 

 

( )0θ ′−
 

-0.5 0.73944 0.73945 0.73945 0.73945 

0 0.82301 0.82300 0.82300 0.82300 

0.5 0.91258 0.91259 0.91259 0.91259 

 

( )0φ′
 

-0.5 0.64332 0.64333 0.64333 0.64333 

0 0.79925 0.79926 0.79926 0.79926 

0.5 0.97276 0.97277 0.97277 0.97277 

 

Table 3: Numerical values of 
( )0f ′′

, 
( )0θ ′−

 and 
( )0φ′

 for 
,5.0,7.0,10 ===γ MPr    

              
5.0   1,6.0,1.0,6,1  and ==τ==π=β= wcc fSER

 
 

 δ  [ ]5,5  [ ]6,6  [ ]7,7  [ ]8,8  

 

( )0f ′′  

-1 6.51395 6.51396 6.51396 6.51396 

0 4.28481 4.28480 4.28480 4.28480 

1 3.31518 3.31519 3.31519 3.31519 

 

( )0θ ′−  

-1 0.47728 0.47729 0.47729 0.47729 

0 0.46833 0.46834 0.46834 0.46834 

1 0.91258 0.91259 0.91259 0.91259 

 

( )0φ′  

-1 1.16398 1.16399 1.16399 1.16399 

0 1.05036 1.05037 1.05037 1.05037 

1 0.97276 0.97277 0.97277 0.97277 

 

 

CONCLUSIONS 

 

 The effects of thermophoretic and heat source or sink parameters for both suction and injection cases 

on MHD flow over an inclined radiate isothermal permeable surfaces have been studied. The results 

obtain in this study suggest the ADM-Padé approach as one of the simplest convincing tool for solving 

more complex boundary layer conditions numerically in the future. 
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