UNISEL Journal of Sciences, Engineering and Technology 1(1): 39-46

© 2014 Universiti Selangor

Numerical Solutions for Heat and Mass Transfer of
Thermophoretic Magnetohydrodynamic Flow by Using Adomian-
Padé Technique
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Abstract

A free convection thermophoretic hydromagnetic flow over a radiate isothermal inclined plate with heat source or
heat sink effect is considered. The effects of the thermophoretic parameter and internal heat generation or
absorption for both suction and injection cases are discussed. Hence, the transformed boundary layer equation and
the new boundary equation are solved by Adomian-Padé technique.
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INTRODUCTION

Thermophoresis has been the subject of abundant studies for many years (Derjaguin, 1965; Rana;
Bhargava, 2002). It describes the migration of suspended small micron sized particles in a non-
isothermal gas to the direction with decreasing thermal gradient. The velocity acquired by the particle is
known as thermophoretic velocity while the force experienced by the suspended particles due to the
temperature differences is known as thermophoretic force (Hayat & Qasim, 2010; Kandasamy et al.,
2010). The earliest studies on the role of thermopohoresis in laminar flow over a horizontal plate with
analysis on cold and hot plate conditions is given by Goren (1977). The study of magnetohydrodynamic
(MHD) flow and heat transfer are deemed as of great interest due to the effect of magnetic field on the
boundary layer flow control. The effect of suction and injection along a flat plate for free convection
have attract interest of many researcher due to the double impacts projected with respect to heat
transfer.

The study on MHD flow over an inclined plate with thermophoresis and heat source has never been
considered before. In this paper, we will extend the previous on a steady MHD flow with
thermophoresis over a permeable radiate inclined plate by Alam et al. (2009) to include the heat source
or sink parameter. We also compared the analytical solution by Noor et al. (2012) with employed
Adomian decomposition method aided by Padé approximation to treat boundary condition at infinity.
The values of skin friction, wall heat transfer, and wall deposition flux are also tabulated.

MATHEMATICAL MODEL

Consider a two-dimensional steady laminar flow of an incompressible electrically conducting fluid
over a continuously moving semi-infinite inclined permeable plate with an acute angle & to the

vertical. With the * —axis measured along the plate, a magnetic field B(x) is applied in the
Y~ direction that is normal to the flow direction. Suction or injection is imposed on the permeable
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plate. The temperature of the surface is held uniform at T, which is higher than the ambient

temperature TOO. The species concentration at the surface is maintained uniform at ¢, =0 while the

C

ambient fluid concentration is assumed to be ~=. The presence of uniform internal heat source or sink
and thermophoresis are considered to study the variation of velocity, heat transfer and concentration
deposition on the inclined surface.

Here U and Y are the velocity components in the X —and ' ~direction respectively, V is the

kinematic viscosity, & is the acceleration due to the gravity, B is the volumetric coefficient of the
thermal expansion, T.T, and T, are the temperatures of thermal boundary layer fluid, the inclined
plate and the free stream respectively, O is the electrical conductivity, ~¢ is the fluid thermal

conductivity, P is the fluid density, 7 is the specific heat at constant pressure, 9 is the radiative heat
flux in the y_direction, Q(x) is the internal heating, H s the dynamic viscosity, D is the molecular
VT

diffusivity of the species concentration and is the thermophoretic velocity.

Here ¥ and V are the velocity components in the ¥~ and Y~ direction respectively, V is the

kinematic viscosity, & is the acceleration due to the gravity, B is the volumetric coefficient of the
thermal expansion, .1, and T, are the temperatures of thermal boundary layer fluid, the inclined
plate and the free stream respectively, O is the electrical conductivity, ¢ is the fluid thermal

conductivity, P is the fluid density, 7 is the specific heat at constant pressure, 9: is the radiative heat
flux in the ¥ ~ direction, Q(x) is the internal heating, H s the dynamic viscosity, D is the molecular

diffusivity of the species concentration and Vr is the thermophoretic velocity.
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The boundary conditions corresponding for the model are,
u=U,, v=v,(x), T=T,, C=C, at y=0, (6)

u=0,T7T=7T,,C=C, as y — o, (7)

where Uy is the uniform plate velocity and vw(x) represents fluid suction or injection on the porous
surface.

The governing equations (2)-(4) can be transformed to a set of nonlinear ordinary differential
equations by introducing the following non-dimensional variables.

Y _I-L €
n=wo s =20 fn), Oln)=—=, b= (8)

w o0 o0

where ? is the stream function that satisfies the continuity equation (1) with

=2 =0,1g), =22 o BV () (o), )
y Ox 2x

Using equations (8) and (9), the following similarity equations with the corresponding boundary
conditions are obtained.

f"+ ff"—y06coso—Mf' =0, (10)
(BR+4)0"+3RP. (0 + (1" + E.M(f') +250)=0, (11)
o' +S,(f—10')p —S,10") =0, (12)

subject to,

f=fu f'=10=1 =0 at n=0, (13)
f'=0,0=0, ¢=1as n—>o, (14)
Va Gr. . Re .
where 7 is the local buoyancy parameter, ~ * is the local Grashof number, * is the local Reynolds

number, M is the Hartmann number, R is the conduction-radiation parameter, L, is Prandtl number,

E, is Eckert number, Se is the Schmidt number, 1 is the permeability of the porous surface with

positive value indicates suction while negative value indicates injection and O is the internal heat
source or sink defined respectively.

_ 3 2
y = lfr’\z R Glf‘x = gﬁ(T” {wX2X) R Rex :—2XUO , M = GBO , (15)

1% 1% pU,

X
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Ay 2
:4;T3’ Pr:VpCJ’ EC:L’ Sczl’ (16)
L A, c,(T,-T,) D
P Y S (17)
vU, pc,U,

SOLUTION APPROACH

In this section, we shall demonstrate the simple application of the Adomian Decomposition Method

(ADM) to obtain an approximate solution of equations (10)-(14). First, write equations (10)-(12) in the
operator form,

L f=Mf"—y6coso— ff",

(18)

3RE. (i ooy N
10| e - - 2. - EM (Y - 200) o)
Lip="5(10"0+10'¢'— /o), (20)

where L= d*[di’ , L,=d*/dn’ and D= d*/dn’ . Applying the inverse operator
L'O)=[[[C) dedrdr L;()=[[Odear  L'()=[[()dedr
000 ) 00 and 00

to the left sides of equations (18)-
(20) and by employing the boundary condition (13)-(14) gives,

f(n)=n+%n2 +L'[Mf'—y0cosp— fi"],

(21)

0(n)=1+na, + pr’ }Lzl (=B (rF - Em(s'f -250), (22)
+4

o(n)=no; +S,L; (x0"¢+10'0' — f0'), (23)

where %1 = f (0), a,=0 (O) and %= ¢ (0) are to be determined. The nonlinear terms in equations
(21)-(23) can be decomposed as (Adomian (1994)),

B = A 10 =3B ST =3C ST =36, 0= A, )
k=0 k=0 k=0 k=0 k=0

(25)
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Adopting the algorithm for the Adomian polynomials proposed by Zhu et.al (2005), it can be shown
that,

4= ka "B =Y SO C=2 S G=2 i (26)
k=0 k=0 k=0
H, =04, J. =) 64, L= fd, Vi=0,.,n. (27)
k=0 k=0 k=0

Substituting equations (24)-(25) into equations (21)-(23) and adopting the modified technique of
Wazwaz (2006), the simple recursive Adomian algorithm for generating the individual terms of the
series solution of equations (10)-(14) are,

foln)=n, (28)
1 ]
fl(n)zzocszrLI[Mfo—yecosB—Ao], (29)
f,m(n)zL"[Mfk’—yecosB—Ak], k>1, (30)
6,(n)=1, (31)
0,(n)=na, + { SRE, }L‘l[ B,-E.C,—E.MG,-236,], (32)
3R+4
3RP. | _
0,,(n)= {313 " 4}L [-B,-E.C,—EMG,-280,], k=1, (33)
¢0(n): nas;, (34)
¢1(n):ScL_I[TH0+TJ0_L0]’ (35)
¢k+1(ﬂ)=Schl [THk +1J, _Lk]’ k=1, (36)

The algorithms (28)-(36) are coded using the numerical algebraic package in Maple 15 associate with
built in Padé approximants procedure with significant digits 16. To achieve reasonable accuracy we

obtain the 20-term approximation of f(77)’ 9(77) and ¢(77), where the first four terms are given as
follows,

fon)=n, (37)
0,(n)=1, (38)
9o (n)=naL,, (39)
£,(n)=1.70393n7 —1.35999n° +0.22596n*, (40)
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0,(n)=—-0.82300n—1.181701* + 0576521, (41)
d,(n)=—0.246900,n* — 0.532040,n* +0.35213a,1°, (42)
£,(n)=0.17577m° +0.09405n° —0.0962 1", (43)
0,(n)=0.07411n* +0.009951° —0.04915n°, (44)
d,(n)=0.214360.,n° —0.186950,,n°, (45)
£,(n)=-0.010961" +0.009131° +0.014761", (46)
0,(n)=0.056251" - 0.00413n* —0.00533n’, (47)
d,(n)=-0.099460,,n" +0.124450,,1°. (48)
RESULTS AND DISCUSSION
The value of skin friction|f”(0] are compared with previous studies (Cortell, 2007; Javed et al., 2011;

Noor et al.,2012) and depicted in Table 1. From Table 1, it shows a good agreement with the previous

study. Table 2 showed the comparison between different order of Padé approximants for several fW. It

was found that, the skin friction is higher for the case of injection fy=-05 on the inclined permeable

surface. However, the heat transfer from the surface and the deposition flux are greater for the suction
when fu= 0'5. For Table 3, also showed the comparison between different order of Padé
approximants for several value of O . Here 0=-1 represents heat sink, 0 =0 js without heat source

or sink whereas ¢ :1represents heat source. From these tables, it is clearly demonstrate that the
convergence of solution are better for higher order of approximations.

Table 1: The comparison of |f (0] value for 7~ M=f,=0
Cortell (2007) Javed et.al. (2011) Noor et.al. (2012) ADM-Padé (Present)
0.6275 0.6275 0.6275 0.6275
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Table 2: Numerical values of f"(O), _H'(O) and ¢'(0) for Y =10, 5, =0.7,M =0.5,
R=1p=7/6,E =0.1,5, =0.6,1=1 and 5=1

2 [53] [6-6] [7.7] [8.8]
-0.5 3.39923 3.39924 3.39924 3.39924
£"(0) 0 3.40785 3.40786 3.40786 3.40786
0.5 3.31518 3.31519 3.31519 3.31519
-0.5 0.73944 0.73945 0.73945 0.73945
~0'(0) 0 0.82301 0.82300 0.82300 0.82300
0.5 0.91258 0.91259 0.91259 0.91259
-0.5 0.64332 0.64333 0.64333 0.64333
#'(0) 0 0.79925 0.79926 0.79926 0.79926
0.5 0.97276 0.97277 0.97277 0.97277

Table 3: Numerical values of f”(O)' _‘9’(0) and ¢’(0) for ¥ =10,F,=0.7,M =0.5,
R:l,B:TC/6,EC :O.I,SC 20,6,‘[:1 and fw =0.5

S [5.5] [6.6] [7.7] [8.8]
-1 6.51395 6.51396 6.51396 6.51396
£"(0) 0 4.28481 4.28480 4.28480 4.28480
1 3.31518 3.31519 3.31519 3.31519
-1 0.47728 0.47729 0.47729 0.47729
-0'(0) 0 0.46833 0.46834 0.46834 0.46834
1 0.91258 0.91259 0.91259 0.91259
-1 1.16398 1.16399 1.16399 1.16399
#(0) 0 1.05036 1.05037 1.05037 1.05037
1 0.97276 0.97277 0.97277 0.97277

CONCLUSIONS
The effects of thermophoretic and heat source or sink parameters for both suction and injection cases
on MHD flow over an inclined radiate isothermal permeable surfaces have been studied. The results

obtain in this study suggest the ADM-Padé approach as one of the simplest convincing tool for solving
more complex boundary layer conditions numerically in the future.
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