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Abstract: The Radial Point Interpolation Method (RPIM) is one of the Meshfree methods. RPIM approximation
function passes through each node point in the influence domain, thus makes the implementation of essential
boundary conditions much easier and reducing complexity in numerical algorithms than other Meshfree methods.
However, without the use of predefined mesh, there will be considerable differences in the location of the nodes
thus causing topological errors. This topological error will create unstable solutions for the simultaneous
equations. This present study is concerned with developing a more efficient solution by introducing a support
domain in the RPIM. The study is to outline the complete procedures for formulations of RPIM with support
domain for two-dimensional plane stress problems and write the corresponding MATLAB source code. The
performance of the optimum size of the support domain is evaluated then compare to Finite Element Method
(FEM). The result shows that RPIM with support domain, works well and provides an approving comparison
against the conventional FEM. The converged solution is achieved.
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1. Introduction

Simulation-based design in engineering is becoming very important nowadays due to
the advancement of computing technology. It changes the way engineers interact with
engineering problems significantly. Engineers use software to design and analyse engineering
problems, thereby allowing engineers to be able to deal with various problems in less time with
accurate solutions (Shaikh, 2012). In this area, the Finite Element Method (FEM) is a key
component that has been used in the analysis. However, the creation of a mesh in FEM has
been much discussed in terms of programming capacity, leading to the development of a new
numerical technique without the need for mesh creation, i.e., the Meshfree method.

The Meshfree method has recently risen to prominence as one of the most important
methods in numerical analysis. The Meshfree methods are identical to FEM except for the
construction of the shape functions, which eliminates the necessity for the mesh. The shape
functions are built for a specific point of interest without the need for element-based
interpolation. This idea eliminates the requirement for elements as well as the assembly
procedure. Meshfree is a family of techniques that attracted the attention of many researchers
in their studies (Nayroles et. al. 1992; Belytscho et. al. 1994; Liu et. al. 1995; Liu et. al. 1997,
Atluri et. al. 1998; Mokhtaram et. al. 2020).

The Radial Point Interpolation Method (RPIM) is one of the Meshfree methods (Zahiri,
2011). Its approximation function passes through each node point in the influence domain, thus
makes the implementation of essential boundary conditions much easier and reducing
complexity in numerical algorithms than other Meshfree methods (Wang et al. 2002).
However, without the use of predefined mesh, there will be considerable differences in the
location of the nodes thus causing topological errors. The topological error will create unstable
solutions of simultaneous equations. To overcome these problems, support domain is
introduced to the domain problem (Martinez, 2019).

This present study concerns with developing a more efficient technique by introducing
support domain in the RPIM for 2D plane stress analysis. The study is to outline the complete

28



. HOSTED BY | Selangor Science &Technology Review

Special Issue: System Design & Instrumentation
Vol. 6, No. 3, (2022)

procedures for formulations of RPIM with and without support domain and write
corresponding MATLAB source code and evaluate the performance of the optimum size of
support domain then compare to established numerical analysis, i.e., FEM (Liu and Gu, 2005).

2. Research Methodology

The general procedure of the research methodology can be described by the following
diagram as shown in Figure 2.1. The figure shows the procedure in a step-by-step manner on
the formulations of RPIM with support domain for two-dimensional plane stress problems.
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Figure 2.1: Flowchart of RPIM with support domain for two-dimensional plane stress
problems

2.1 Radial Basis Function (RBF)

Radial Basis Function (RBF) is used to develop the RPIM shape functions. Consider a
function u(x) defined in the problem domain with a number of scattered field nodes. For the
point of interest x,, the field function u(x) is first approximated using RBFs as follows;

n m
u(x) = R;(x)a; + Pi(x)b; = R"(x)a + PT(x)b (1)
2,2,
where i and j are the running indexes, R;(x) isa RBF and P;(x) is a polynomials in the space
coordinates x = (x,y), n is the number of RBFs and m is the number of polynomial basis

functions. When m = 0, pure RBFs are used. Otherwise, the RBF is augmented with m
polynomial basis functions. a; and b; are constants yet to be determined.
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RBFs come in a variety of forms (Wendland, 1998). This study employs RBF Multi-
quadrics (RBF-MQ) and RBF Thin plate spline (RBF-TPS), given respectively as;

Ri(x) = (Tiz + (ach)Z)q (2)

Ry(x) =" ®3)

where a,, g, and n are dimensionless shape parameters, and d.. is the characteristic length. r;
is the distance between x,, and a node at x;, defined as;

= G~ %) + (vg ~ %) @

The coefficients a; and b; can be determined by enforcing Eqgn. (1) to be satisfied at the nodes
in the domain. This is done by evaluating the equation subsequently at each node point. This
leads to n linear equations, one for each node. Due to the addition of m terms contributed by
the polynomial basis functions, additional equations are needed to obtain a unique solution.
Therefore, the additional requirement can be applied to the system as;

z P,(x)a; = P,,"a =0 (5)
j=1

the field variables thus can be given as;

u(x) ={R"(x) PT(x)}G™'U = & (x)U (6)

where @(x) are the RPIM shape functions.

2.2 Plane Stress Formulation

For completion, the plane stress formulation is detailed in this section. For a domain Q
bounded by a boundary T, the state of equilibrium, is given as;

LTe4+b=0 inQ (7)

where o is the stress tensor, L is a matrix of differential operators, and b is the body force of
the domain Q. The standard Galerkin weak form of the Eqn. (7) can be written in matrix
forms as;

f f NV [BI(ENO)T [N1(R)” dy dx = f f IN]” {f} dy dx f [N]" (b} ds (®)
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The left-hand side terms of Eqn. (8) is the stiffness matrix [k] and the right-hand side
of the equation is the vector force {f}.

[K] = f f INT"[0][E][0]" [N] dy dx ()

() = f f INT" (£} dy dx f [N]{b}" ds (10)

Alternatively, in matrix form, the discretized equation of the problem can be represented as
given in Egn. (2.5).

[k]{@}" = {f} (11)

2.3 Support Domain

The domain will be discretized using randomly located points, which will be associated
with a support domain with the surrounding nodes. These domains will be constructed with
simple geometric forms and from their contributions it will be possible to construct the
approximation on the general domain. In generating the support domain, it should be based on
the number of nodes in the basis function to meet the Kronecker delta condition as shown in
Figure 2.2.

Local support
domain

Figure 2.2: Support domains

3. Numerical Example

Here, numerical examples are presented to evaluate the performance of the developed
formulatiom for the analysis of two-dimensional plane stress problems. Cantilever beam
subject to end loading is chosen to examine the ability of the RPIM with support domain in
dealing with structure mechanics.
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The geometry and the material properties of the beam are depth D = 0.5 m, length L =
8 m, Young’s modulus E = 205 kPa and Poisson’s ratio v = 0.25. The cantilever beam is
subjected to end loading 35 kN as shown in Figure 3.1.

35 kN
y,v

0.5m
Y, |

—x,u
L=8m

Figure 3.1: A cantilever beam subject to end loading

The “exact” solution herein is defined from a FEM commercial software that is
COMSOL, with a very fine mesh. Table 3.1 shows the locations of displacement result and the
exact solution.

Table 3.1. The locations of displacement result and the exact solution

Location Displacement (FEM)
x,y) X-displacement Y-displacement
(8,0) -0.013096 -0.280229
(6,0.25) 0 -0.177393
(4,0) -0.009827 -0.087722
(4,0.25) 0 -0.087655
(4,0.5) 0.009827 -0.087722

The choice of size for support domain depends on the number of nodes. Therefore, to
understand the behavior of the support domain, three models have been used in this study based
on the total number of nodes and the number of Gauss points as shown in Table 3.2.

Table 3.2. The total number of nodes and the number of Gauss points

Dirextion of nodes Number of Number of
N, N, nodes Gauss Points
Model 1 300 10 3311 300
Model 2 350 12 4563 300
Model 2 450 14 6765 300
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An increase in the number of nodes will increase the number of support domains and
in turn increase the diameter of the support domain. This will allow the size of the matrix as a
whole to be controlled. The support domain used to reduce the size of the matrix are 2.7m, 2m
and 1m for Models 1, 2 and 3, respectively as shown in Figure 3.2.
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Figure 3.2: Support domains for (a) Model 1, (b) Model 2 and (c) Model 3

4. Results and Discussion

The displacement result of the RPIM with and without support domains is compared with exact
solution i.e., COMSOL software, from Table 3.1. Table 4.1 demonstrates the percentage of
displacement error in the x and y directions of the problem.

Table 4.1. Prcentage error for Models 1, 2 and 3
Location | Direction Displacement error (%0)

(x,y) of disp. Model 1 Model 2 Model 3
without with | without | with | without | with
support | support | support | support | support | support
domain | domain | domain | domain | domain | domain

(8,0) u 2350 | 0.50 | 31.13 | 037 | 4640 | 0.11
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v 17.89 0.78 28.59 0.28 64.28 0.10

u 0.0 0.0 0.0 0.0 0.0 0.0

(6,0.25) v 14.38 0.89 14.72 0.21 71.09 0.08
u 17.62 0.63 27.80 0.10 37.98 0.09

(4.0) v 3.03 1.12 4.76 0.11 73.16 0.02
u 0.0 0.0 0.0 0.0 0.0 0.0

(4,0.25) v 3.82 1.12 3.96 0.00 38.19 0.03
u 17.64 0.63 27.81 0.10 37.99 0.09

(4,0.5) v 3.03 1.12 4.76 0.11 73.16 0.02

Table 4.1 shows that, high displacement error were obtained for all three models for
RPIM analysis without support domains. However, good agreement was achieved when the
support domain was employed in the formulation. This shows that the topological error from
the problems has been solved by reducing the number of equations to be solved by introducing
the support domain. The results also show that the size of each support domain will depend on
the number of nodes used. This has been shown from comparisons over the three models. The
high number of nodes for Model 3 results in more support domains required than Models 1 and
2. Such verifications give a confirmed level of confidence and validate the use of the support
domain in the analysis of RPIM.

5. Conclusion

In this paper, the concept of support domains on the analysis of the RPIM is presented
and discussed in a step-by-step manner. The RPIM method is constructed based on a Galerkin
formulation with the adoption of RBF to produce the shape functions. The method was applied
for 2D plane stress problem. Verifications of the problem has been compared with conventional
RPIM without support domains and FEM with a very fine mesh. The developed method
improves on the existing techniques in the following ways. Without the use of predefined mesh
in Meshfree methods, there will be considerable differences in the location of the nodes thus
causing topological errors. This situation will become more critical when a large number of
nodes are used to obtain converged results. This will create unstable solutions of the
simultaneous equations. The use of the support domain has reduced differences in the location
of the nodes and in turn, has managed to provide good results.
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