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Abstract: The Radial Point Interpolation Method (RPIM) is one of the Meshfree methods. RPIM approximation 

function passes through each node point in the influence domain, thus makes the implementation of essential 

boundary conditions much easier and reducing complexity in numerical algorithms than other Meshfree methods. 

However, without the use of predefined mesh, there will be considerable differences in the location of the nodes 

thus causing topological errors. This topological error will create unstable solutions for the simultaneous 

equations. This present study is concerned with developing a more efficient solution by introducing a support 

domain in the RPIM. The study is to outline the complete procedures for formulations of RPIM with support 

domain for two-dimensional plane stress problems and write the corresponding MATLAB source code. The 

performance of the optimum size of the support domain is evaluated then compare to Finite Element Method 

(FEM). The result shows that RPIM with support domain, works well and provides an approving comparison 

against the conventional FEM. The converged solution is achieved. 
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1. Introduction 

 

Simulation-based design in engineering is becoming very important nowadays due to 

the advancement of computing technology. It changes the way engineers interact with 

engineering problems significantly. Engineers use software to design and analyse engineering 

problems, thereby allowing engineers to be able to deal with various problems in less time with 

accurate solutions (Shaikh, 2012). In this area, the Finite Element Method (FEM) is a key 

component that has been used in the analysis. However, the creation of a mesh in FEM has 

been much discussed in terms of programming capacity, leading to the development of a new 

numerical technique without the need for mesh creation, i.e., the Meshfree method.  

The Meshfree method has recently risen to prominence as one of the most important 

methods in numerical analysis. The Meshfree methods are identical to FEM except for the 

construction of the shape functions, which eliminates the necessity for the mesh. The shape 

functions are built for a specific point of interest without the need for element-based 

interpolation. This idea eliminates the requirement for elements as well as the assembly 

procedure. Meshfree is a family of techniques that attracted the attention of many researchers 

in their studies (Nayroles et. al. 1992; Belytscho et. al. 1994; Liu et. al. 1995; Liu et. al. 1997; 

Atluri et. al. 1998; Mokhtaram et. al. 2020). 

The Radial Point Interpolation Method (RPIM) is one of the Meshfree methods (Zahiri, 

2011). Its approximation function passes through each node point in the influence domain, thus 

makes the implementation of essential boundary conditions much easier and reducing 

complexity in numerical algorithms than other Meshfree methods (Wang et al. 2002). 

However, without the use of predefined mesh, there will be considerable differences in the 

location of the nodes thus causing topological errors. The topological error will create unstable 

solutions of simultaneous equations. To overcome these problems, support domain is 

introduced to the domain problem (Martinez, 2019). 

This present study concerns with developing a more efficient technique by introducing 

support domain in the RPIM for 2D plane stress analysis. The study is to outline the complete 
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procedures for formulations of RPIM with and without support domain and write 

corresponding MATLAB source code and evaluate the performance of the optimum size of 

support domain then compare to established numerical analysis, i.e., FEM (Liu and Gu, 2005). 
 

 

 

2. Research Methodology 
 

The general procedure of the research methodology can be described by the following 

diagram as shown in Figure 2.1. The figure shows the procedure in a step-by-step manner on 

the formulations of RPIM with support domain for two-dimensional plane stress problems. 

 

 

 
Figure 2.1: Flowchart of RPIM with support domain for two-dimensional plane stress 

problems 

 

 
 

2.1 Radial Basis Function (RBF) 

 

Radial Basis Function (RBF) is used to develop the RPIM shape functions. Consider a 

function 𝑢(𝒙) defined in the problem domain with a number of scattered field nodes. For the 

point of interest 𝑥𝑄 the field function 𝑢(𝒙) is first approximated using RBFs as follows; 

 

𝑢(𝒙) = ∑  𝑅𝑖(𝒙)𝑎𝑖

𝑛

𝑖=1

+ ∑  𝑃𝑗(𝒙)𝑏𝑗

𝑚

𝑗=1

= 𝑹𝑇(𝒙)𝒂 + 𝑷𝑇(𝒙)𝒃 (1) 

where i and j are the running indexes,  𝑅𝑖(𝒙) is a RBF and  𝑃𝑗(𝒙) is a polynomials in the space 

coordinates 𝒙 = (𝑥, 𝑦), n is the number of RBFs and m is the number of polynomial basis 

functions. When 𝑚 = 0, pure RBFs are used. Otherwise, the RBF is augmented with m 

polynomial basis functions. 𝑎𝑖 and 𝑏𝑗 are constants yet to be determined.  
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RBFs come in a variety of forms (Wendland, 1998). This study employs RBF Multi-

quadrics (RBF-MQ) and RBF Thin plate spline (RBF-TPS), given respectively as;    

 

𝑅𝑖(𝒙) = (𝑟𝑖
2 + (𝛼𝑐𝑑𝑐)2)𝑞 (2) 

𝑅𝑖(𝒙) = 𝑟𝑖
𝜂 (3) 

 

where 𝛼𝑐, 𝑞, and 𝜂 are dimensionless shape parameters, and 𝑑𝑐 is the characteristic length. 𝑟𝑖 

is the distance between 𝒙𝑸, and a node at 𝒙𝒊, defined as; 

  

𝑟𝑖 = √(𝑥𝑄 − 𝑥𝑖)
2

+ (𝑦𝑄 − 𝑦𝑖)
2
 (4) 

 

The coefficients 𝑎𝑖 and 𝑏𝑗 can be determined by enforcing Eqn. (1) to be satisfied at the nodes 

in the domain. This is done by evaluating the equation subsequently at each node point. This 

leads to 𝑛 linear equations, one for each node. Due to the addition of 𝑚 terms contributed by 

the polynomial basis functions, additional equations are needed to obtain a unique solution. 

Therefore, the additional requirement can be applied to the system as; 

 

∑  𝑃𝑗(𝑥)𝑎𝑖

𝑛

𝑗=1

= 𝑷𝑚
𝑇𝒂 = 0 (5) 

 

the field variables thus can be given as; 

 

𝑢(𝒙) = {𝑹𝑇(𝒙) 𝑷𝑇(𝒙)}𝑮−1𝑼̃ = 𝜱(𝒙)𝑼̃ (6) 

 

where 𝜱(𝒙) are the RPIM shape functions.   

 

 

2.2 Plane Stress Formulation 
 

For completion, the plane stress formulation is detailed in this section. For a domain Ω 

bounded by a boundary Γ, the state of equilibrium, is given as; 

 

𝑳𝑇𝝈 + 𝒃 = 0     𝑖𝑛 Ω (7) 

 

where 𝝈 is the stress tensor, 𝑳 is a matrix of differential operators, and 𝒃 is the body force of 

the domain Ω. The standard Galerkin weak form of the Eqn. (7) can be written in matrix 

forms as; 

 

∬[𝑁]𝑇[∂][𝐸][∂]𝑇[𝑁]{𝑢̂}𝑇 𝑑𝑦 𝑑𝑥 = ∬[𝑁]𝑇 {𝑓} 𝑑𝑦 𝑑𝑥 ∫[𝑁]𝑇{𝑏}𝑇𝑑𝑠 (8) 
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The left-hand side terms of Eqn. (8) is the stiffness matrix [k] and the right-hand side 

of the equation is the vector force {f}. 

 

[𝑘] = ∬[𝑁]𝑇[∂][𝐸][∂]𝑇[𝑁] 𝑑𝑦 𝑑𝑥 (9) 

{𝑓} = ∬[𝑁]𝑇 {𝑓} 𝑑𝑦 𝑑𝑥 ∫[𝑁]𝑇{𝑏}𝑇𝑑𝑠 (10) 

 

Alternatively, in matrix form, the discretized equation of the problem can be represented as 

given in Eqn. (2.5). 

 

[𝑘]{𝑢̂}𝑇 = {𝑓} (11) 

 

 

2.3 Support Domain 
 

The domain will be discretized using randomly located points, which will be associated 

with a support domain with the surrounding nodes. These domains will be constructed with 

simple geometric forms and from their contributions it will be possible to construct the 

approximation on the general domain. In generating the support domain, it should be based on 

the number of nodes in the basis function to meet the Kronecker delta condition as shown in 

Figure 2.2.  

 

 

Figure 2.2: Support domains 

 

 

 

3. Numerical Example 
 

Here, numerical examples are presented to evaluate the performance of the developed 

formulatiom for the analysis of two-dimensional plane stress problems.  Cantilever beam 

subject to end loading is chosen to examine the ability of the RPIM with support domain in 

dealing with structure mechanics.  
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The geometry and the material properties of the beam are depth D = 0.5 m, length L = 

8 m, Young’s modulus E = 205 kPa and Poisson’s ratio υ = 0.25. The cantilever beam is 

subjected to end loading 35 kN as shown in Figure 3.1. 

 

 

 
Figure 3.1: A cantilever beam subject to end loading 

 

 

The “exact” solution herein is defined from a FEM commercial software that is 

COMSOL, with a very fine mesh. Table 3.1 shows the locations of displacement result and the 

exact solution.  

 

 

Table 3.1. The locations of displacement result and the exact solution 

Location 

(x,y) 

Displacement (FEM) 

X-displacement Y-displacement 

(8,0) -0.013096 -0.280229 

(6,0.25) 0  -0.177393 

(4,0) -0.009827  -0.087722 

(4,0.25) 0  -0.087655 

(4,0.5) 0.009827  -0.087722 

 

 

The choice of size for support domain depends on the number of nodes. Therefore, to 

understand the behavior of the support domain, three models have been used in this study based 

on the total number of nodes and the number of Gauss points as shown in Table 3.2.  

 

 

 

 

 

Table 3.2. The total number of nodes and the number of Gauss points 

 Dirextion of nodes Number of 

nodes 

Number of 

Gauss Points 𝑵𝒙 𝑵𝒚 

Model 1 300 10 3311 300 

Model 2 350 12 4563 300 

Model 2 450 14 6765 300 
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An increase in the number of nodes will increase the number of support domains and 

in turn increase the diameter of the support domain. This will allow the size of the matrix as a 

whole to be controlled. The support domain used to reduce the size of the matrix are 2.7m, 2m 

and 1m for Models 1, 2 and 3, respectively as shown in Figure 3.2.  

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3.2: Support domains for (a) Model 1, (b) Model 2 and (c) Model 3 

 

 

 

4. Results and Discussion 
 

The displacement result of the RPIM with and without support domains is compared with exact 

solution i.e., COMSOL software, from Table 3.1. Table 4.1 demonstrates the percentage of 

displacement error in the x and y directions of the problem. 

 

Table 4.1. Prcentage error for Models 1, 2 and 3 

Location 

(x,y) 

Direction 

of disp. 

Displacement error (%) 

Model 1 Model 2 Model 3 

without 

support 

domain 

with 

support 

domain 

without 

support 

domain 

with 

support 

domain 

without 

support 

domain 

with 

support 

domain 

(8,0) u 23.50 0.50 31.13  0.37  46.40  0.11  
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v 17.89 0.78 28.59 0.28 64.28 0.10 

(6,0.25) 
u 0.0 0.0 0.0 0.0  0.0 0.0 

v 14.38 0.89 14.72 0.21 71.09 0.08 

(4,0) 
u 17.62 0.63  27.80  0.10  37.98  0.09 

v 3.03 1.12 4.76 0.11 73.16 0.02 

(4,0.25) 
u 0.0  0.0 0.0 0.0 0.0  0.0 

v 3.82 1.12 3.96 0.00 38.19 0.03 

(4,0.5) 
u 17.64  0.63 27.81  0.10  37.99  0.09 

v 3.03 1.12 4.76 0.11 73.16 0.02 

 

 

Table 4.1 shows that, high displacement error were obtained for all three models for 

RPIM analysis without support domains. However, good agreement was achieved when the 

support domain was employed in the formulation. This shows that the topological error from 

the problems has been solved by reducing the number of equations to be solved by introducing 

the support domain. The results also show that the size of each support domain will depend on 

the number of nodes used. This has been shown from comparisons over the three models. The 

high number of nodes for Model 3 results in more support domains required than Models 1 and 

2. Such verifications give a confirmed level of confidence and validate the use of the support 

domain in the analysis of RPIM. 

 

 

 

5. Conclusion 
 

In this paper, the concept of support domains on the analysis of the RPIM is presented 

and discussed in a step-by-step manner. The RPIM method is constructed based on a Galerkin 

formulation with the adoption of RBF to produce the shape functions. The method was applied 

for 2D plane stress problem. Verifications of the problem has been compared with conventional 

RPIM without support domains and FEM with a very fine mesh. The developed method 

improves on the existing techniques in the following ways. Without the use of predefined mesh 

in Meshfree methods, there will be considerable differences in the location of the nodes thus 

causing topological errors. This situation will become more critical when a large number of 

nodes are used to obtain converged results. This will create unstable solutions of the 

simultaneous equations. The use of the support domain has reduced differences in the location 

of the nodes and in turn, has managed to provide good results. 
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