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Abstract: This paper reviews the common single iteration of explicit equations for estimating the friction
factor in pipes. The friction factor values were computed using Microsoft Excel. Using absolute error, relative
percentage error, mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE),
the Colebrook’s equation comparison was expressed. The best equation to estimate the friction factor was
Beluco-Schettini when looking at the average error, MSE, and RMSE. In contrast, of all the equations, the
Haaland equation is the most consistent.
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1. Introduction

Colebrook's equation (1), also known as the Colebrook-White equation, developed in
1939 to calculate the friction factor for flow in pipes problem (Colebrook, 1939). The
development of the equation was considered a good achievement at the time. This equation's
main disadvantage is because of its implicitness, making the equation considered challenging
to solve. It requires the advanced mathematic level to solve the equation.
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From the 1930s until now, researchers developed several equations as an alternative
for Colebrook's equation. In this paper, only explicit with a single iteration is reviewed.
Table 1 shows the equations used in this paper, together with the range of validity of the
equation.

Table 1. Various single iteration explicit approximations of Colebrook's equation

Equation  Equation Author
no. Validity range [reference]
B 7\T? Altshul
2) f =|-1.8log (g/D +%ﬂ (Nekrasov, 1969)
Not sbecified
r b NI -2 Churchill
¢ )
(3) £ —| -2log D (T (Churchill, 1973)
Re
Not specified
r -2 Eck
D 15
(4) f = —2Iog(%+ﬁﬂ (Winning & Coole, 2013)

Not s_pecified
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Equation  Equation Author
no. Validity range [reference]
09\ 72 Jain
(5) f =|-2log ¢/D L[ 6943 (Romeo et al., 2002)
3.715 Re
4x10°< ¢D<5x10%and 5 x 10° <Re < 10’
-2 Swamee - Jain
D 574
(6) f = {-Zlog (‘2—7 + Wﬂ (Swamee & Jain, 1976)
10°< gD <10%and 5 x 10° <Re < 10°
r 6.5\ Round
(7) f =| -1.8log (O.lSSg/D +%ﬂ (Round, 1980)
0< gD <5x102and 4 x 10° < Re < 10°
r 5 6.81 09\ T2 Pavlov — Romankov -Noskov
& . i
(8) f =|-2log / L (Levenspiel, 1998)
3.7 Re
Not specified
i 111 -2 Haaland
9) f =|-1.8log (‘9/_D +@ (Haaland, 1983)
3.7 Re
10°< gD <5x10?and 4 x 10°® < Re < 10°
r 562\ Robaina
(10) f =|-2log (0.27 (¢/D)+ Wﬂ (Robaina, 1992)
1x10°< gD <1x10%and 4 x 10°<Re <4 x 10’
r DY (97311082 2169 Ghanbari - Farshad - Rieke’
< . .
(11) f =| 15210 / s (Ghanbari et al., 2011)
7.21 Re
0<&D<5x10%and 2.1 x 10° <Re < 10®
i 1.0954 0995\ 12 Beluco - Schettini
(12) f =|-1.8229791log ( ¢/D j +(5'9802) (Beluco & Beatriz Camano
3.7315 Re Schettini, 2016)

Os.9/_D£9x10'2and3x103£Re£9x108

(13)

(Azizietal., 2019)
4.267 Re?%®

10°< ¢/D <0.05and 2 x 10° <Re < 10°

i 1.108 -2 Azizi — Homayoon - Hojjati
f = 1.805I0g[(8/ D), 5'164]

Take note that Jaric et al. (2011) and Fang, Xu and Zhou (2011) made a mistake in
citing equation (3). They give the power 0.9 only for the Re. Fang, Xu and Zhou (2011) also
made mistakes in citing equation (6) as they mistakenly mention the constant 5.74 as 5/74.
Romeo, Royo and Monzén (2002) made a mistake in citing equation (7). They mistakenly
mention the constant as 0.27 instead of 0.135.
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2. Methodology

The data were calculated for the Reynolds number, Re, between 4,000 to 1 x 108, The
number of nodes calculated as stated in Table 2 means the Reynolds number was calculated
at 43 points as tabulated in Table 2. While for relative roughness, €/d, the range was set
between 0 to 0.10. The number of nodes calculated as stated in Table 3, which means the
relative roughness was calculated at 47 points as tabulated in Table 3. The total number of
nodes will be 2021 as the data then were compared with the Colebrook's equation.

As some of the equation give their suitability range of Reynolds number and relative
roughness for the equation, another set of total nodes were calculated based on the range
given by the equations in Table 1.

Table 2. Number of nodes for Reynolds numbers

Reynolds number, Re Step Nodes
4,000-10,000 1,000 7
20,000-100,000 10,000 9
200,000-1,000,000 100,000 9
2,000,000-10,000,000 1,000,000 9
20,000,000-100,000,000 10,000,000 9
Total Nodes 43

Table 3. Number of nodes for relative roughness, &/d

Relative roughness, e/d Step Nodes
0.000000 - 0.000009 0.000001 10
0.00001 - 0.00009 0.00001 9
0.0001 - 0.0009 0.0001 9
0.001 - 0.009 0.001 9
0.01-0.10 0.01 10
Total Nodes 47

All the friction factor values calculated from the equation then being compared with
the Colebrook’s equation. Absolute error, relative percentage error, mean absolute error
(MAE), mean square error (MSE), and root mean square error (RMSE) are parameters used
to compare the equation's accuracy.

Absolute error,dae is given by

(14)

Where, fei is the estimated friction factor calculated by the equations, while fc,i is the
friction factor from Colebrook's equation. This equation shows the difference between the
friction factor values calculated by using the equation and Colebrook’s equation. The bigger
the value indicates that the higher the error of the equation.

Relative percentage error,d is given by,
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e lcii

5= x 100% (15)

C,i

This equation will be useful to see the percentage of error instead of the error itself.
This parameter shows that when the relative percentage error near zero, the equation is as
accurate as the Colebrook’s equation. But in this paper, only the maximum value of relative
percentage error, dmax Will be shown, which is given by

0 =0 (16)

Another way to see the error is by the average relative percentage error davg. This error
is good to see the overall performance of the equation. The smaller the percentage error
means that the equation can fit the Colebrook’s equation at most Reynolds number and
relative roughness ranges. This measurement will be used as the main factor in deciding the
equation's quality in this paper. Average relative percentage error is given by

f

C,l

fe,i _fc,i

1 n
5avg :Hzl[

X 100%} (17)

Mean absolute error (MAE) is a parameter used to measures the absolute average
distance between the real data and the predicted data. When the value of MAE is more
immense, it means that the equation can fit well with the actual data. In this case, the
Colebrook’s equation. The weakness of MAE is that it fails to punish large errors in
prediction. MAE is given by equation (18).

MAE =32fei ~f_. (18)
" it

i=1

To evaluate the equation by having a parameter that can punish the large error, mean
square error (MSE) can be used. But the disadvantage of MSE is that it also squares up the
units of data as well. So, evaluation with different units is not at all justified. MSE is given by
equation (19)

5mse :_Z(fe,i _fc,i) (19)

The weakness of MSE can be improved by using the root mean squared error
(RMSE). RMSE is given by equation (20), which is the square root of MSE. This metrics
solves the problem of squaring the units.

n 2

RMSE =\/12(fe,i i) (20)

ns=
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The statistical analysis was used to compare the equations' accuracy by considering
all ranges of Reynolds number and relative roughness ranges. It can ensure a better
understanding of all the single iteration explicit approximations of Colebrook's equations.
High error at a particular location should also be considered in the analysis.

3. Results and Discussion

Tables 4 and 5 show the statistical analysis results. Table 4 is the data without
considering the validity range of the equations. As in Table 5, only statistical data based on
the validity range of the equations.

Table 4, Altshul (2) and Round (7) equations are the worst equations giving the
highest value of error regardless of the type of statistical measurements.

Surprisingly, Ghanbari—Farshad—Rieke' equation (11) developed in 2011, not giving
any better result as the errors still among the highest. The same goes for Eck (4) equation.
While equations (3), (5), (6), (8), and (10) give moderate errors. These equations can be used
where the accuracy of the friction factor is not in priority.

Beluco-Schettini (12) is the best equation giving the lowest error but should be used
with care at rough and low Reynolds number turbulent region. This equation gives the
biggest error at Reynold number of 1 x 10® and relative roughness 9 x 102, Azizi-Homayoon-
Hojjati (13) also gives among the lowest value of the error, accept is gives a significant value
of dmax. Meanwhile, even though Haaland equation (9) is behind equation (12) and (13), this
equation gives the lowest value of the dmax. Meaning that equation (7) is the most consistent
equation over the Reynolds number and relative roughness ranges.

Table 4 also can be concluded that most of the equations fail to predict correctly at the
low Reynolds number turbulent region. It can be seen when most of the equation giving the
highest absolute error, 3z at Reynolds number of 4000. In contrast, equation (2), (7) and (11)
gives the highest absolute error at high Reynold number, 1 x 108.

The maximum value of relative percentage error, dmax, at most of the time, differs
from the location of highest absolute error, &z located at. No specific relationship was found.
A similar thing also happens in Table 5.

When comparing with considering the validity range as in Table 5, equation Altshul
(2), Round (7), and Eck (4) equations are still the worst equations giving the highest value of
error regardless of the type of statistical measurements. Ghanbari—Farshad—Rieke' equation
(11) not showing significant improvement when considering the range's validity. This
equation still falls under the equation category should be avoided as it's still giving a high
value of error.

Not many changes for the best equation as equation (12), (13), and (9) are the
equation with small error, respectively. While the best equation is (13) followed by (9) and
(12) if it is seen in view of maximum absolute error,dze.

Other equations, equation (3), (5), (6), (8), and (10), also give moderate errors, similar
when validity range was not considered meaning that these equations can be used where the
accuracy of friction factor is not in priority. For the maximum value of relative percentage
error, dmax, the value occurs mostly at the same location as where the highest absolute error,
dae located at.

An interesting point that can be seen from both of the tables is that there are no
significant changes in the equation's ranking despite the validity range consideration. This
means that even though the equations were developed for a specific range of Reynold number
and relative roughness, it can still be used beyond the range suggested with extra precaution.
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It should be noted only equation (12) was developed to cater the rough surface up to &/d =9
x1072.,

4, Conclusion

Equations Altshul (2), Round (7) and Eck (4) should be avoided. These three
equations give a huge error in the calculation. The best equation by comparing all the
parameters are Beluco-Schettini (12), Azizi-Homayoon- Hojjati (13), and Haaland (9).
Haaland equation (9) is the most consistent. It gives about a similar value of error regardless
of the type of statistical error measurements.
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Table 4. Statistical parameters for observed equations without considering the validity range

Author Saemax Smax Savg MAE MSE RMSE

(year) (e/ D, Re) (e /D, Re)
Altshul 0.1866 194.0611 63.6476 | 0.0296010403 | 0.0030348662 | 0.0550896198
(1952) (9x102 1x10% | (9x10% 1x 109
Churchill 0.0027 3.4173 0.5418 | 0.0001841643 | 0.0000001529 | 0.0003909800
(1973) (9 x 10%,4000) (2 x 107%,4000)
Eck 0.0035 9.6240 2.1868 | 0.0004862699 | 0.0000005983 | 0.0007735178
(1973) (9 x 10%,4000) (0, 1 x 108
Jain 0.0025 3.1865 0.4972 | 0.0001709186 | 0.0000001217 | 0.0003488373
(1976) (9 x 102,4000) (2 x 102,4000)
Swamee — Jain 0.0027 3.3536 0.5286 | 0.0001787241 | 0.0000001452 | 0.0003811156
(1976) (9 x 102,4000) (2 x 102,4000)
Round 0.0118 12.3462 3.9305 | 0.0015650430 | 0.0000099711 | 0.0031577002
(1980) (9%x10% 1x10% | (9x10% 1x10%
Pavlov-Romankov-Noskov | 0.0026 3.0467 0.4880 | 0.0001565994 | 0.0000001149 | 0.0003390381
(1981) (9 x 102,4000) (3 x 102,4000)
Haaland 0.0009 1.4205 0.4398 | 0.0001182578 | 0.0000000265 | 0.0001627311
(1983) (9 x 102,4000) (2 x 10, 100000)
Robaina 0.0025 3.0108 0.4782 | 0.0001531830 | 0.0000001100 | 0.0003316896
(1992) (9 x 10%,4000) (3 x 10%,4000)
Ghanbari-Farshad-Rieke’ | 0.0047 4.8898 1.0350 | 0.0005068262 | 0.0000012815 | 0.0011320297
(2011) (9%x10%1x10% | (9x10% 1x10%
Beluco-Schettini 0.0007 3.2883 0.2989 | 0.0000664139 | 0.0000000095 | 0.0000976483
(2016) (9 x 102,4000) (0, 1 x 10%)
Azizi-Homayoon- Hojjati | 0.0006 4.9948 0.3996 | 0.0000672067 | 0.0000000104 | 0.0001020932
(2018) (9 x 10%,4000) (0, 1 x 108
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Author Sae max Smax Savg MAE MSE RMSE

(year) (e / D, Re) (¢ /D, Re)
Altshul 0.1108 154.8389 52.7167 | 0.0174580756 | 0.0009293279 | 0.0304848803
(1952) (5x10%1x10% | (5x10% 1x10%
Churchill 0.0024 3.4173 0.5512 0.0001641330 | 0.0000001084 | 0.0003292725
(1973) (5 x 102,6000) (2 x 102,4000)
Eck 0.0033 9.6240 2.3445 0.0004874730 | 0.0000005780 | 0.0007602886
(1973) (5 x 10%,6000) (0, 1 x 10%)
Jain 0.0019 2.8292 0.5217 0.0001826011 | 0.0000001118 | 0.0003343224
(1976) (5 x 10%,7000) (2 x 10%,5000)
Swamee — Jain 0.0013 2.8279 0.4982 0.0001228704 | 0.0000000485 | 0.0002201385
(1976) (1 x 102,5000) (1 x 102,5000)
Round 0.0060 10.1796 3.2739 0.0008041862 | 0.0000019722 | 0.0014043404
(1980) (5x102 1x10% | (1x10° 1x 109
Pavlov-Romankov-Noskov | 0.0022 3.0467 0.4948 0.0001361540 | 0.0000000740 | 0.0002719686
(1981) (5 x 10%,4000) (3 x 10°%,4000)
Haaland 0.0006 1.4205 0.4498 0.0001057358 | 0.0000000208 | 0.0001441034
(1983) (5 x 102,4000) (2 x 10, 100000)
Robaina 0.0013 2.6399 0.4797 0.0001340140 | 0.0000000541 | 0.0002326633
(1992) (1 x 102,4000) (1 x 102,4000)
Ghanbari-Farshad-Rieke’ | 0.0021 2.8962 0.7563 0.0002213053 | 0.0000001736 | 0.0004166961
(2011) (5x10%1x10% | (5x10% 1x10%
Beluco-Schettini 0.0007 3.2883 0.2989 0.0000664139 | 0.0000000072 | 0.0000847714
(2016) (9 x 10%,4000) (0, 1 x 108
Azizi-Homayoon- Hojjati | 0.0004 3.0598 0.3878 0.0000619125 | 0.0000000083 | 0.0000911957
(2018) (5 x 10%,4000) (1x10°, 2x107
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