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Abstract: This paper reviews the common single iteration of explicit equations for estimating the friction 

factor in pipes. The friction factor values were computed using Microsoft Excel. Using absolute error, relative 

percentage error, mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE), 

the Colebrook’s equation comparison was expressed. The best equation to estimate the friction factor was 

Beluco-Schettini when looking at the average error, MSE, and RMSE. In contrast, of all the equations, the 

Haaland equation is the most consistent. 
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1. Introduction 

 

Colebrook's equation (1), also known as the Colebrook-White equation, developed in 

1939 to calculate the friction factor for flow in pipes problem (Colebrook, 1939). The 

development of the equation was considered a good achievement at the time. This equation's 

main disadvantage is because of its implicitness, making the equation considered challenging 

to solve. It requires the advanced mathematic level to solve the equation. 
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From the 1930s until now, researchers developed several equations as an alternative 

for Colebrook's equation. In this paper, only explicit with a single iteration is reviewed.   

Table 1 shows the equations used in this paper, together with the range of validity of the 

equation. 

 
Table 1. Various single iteration explicit approximations of Colebrook's equation 
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Equation  

no. 

Equation 

Validity range 

Author  

[reference] 
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(Romeo et al., 2002) 
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10-6  /D  10-2 and 5 x 103  Re  108 

Swamee - Jain 

(Swamee & Jain, 1976) 
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Pavlov – Romankov -Noskov  

(Levenspiel, 1998) 
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Haaland  

(Haaland, 1983) 
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1 x 10-5  /D  1 x10-2 and 4 x 103  Re  4 x 107 

Robaina 

(Robaina, 1992) 
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0  /D  5 x10-2 and 2.1 x 103  Re  108 

Ghanbari - Farshad - Rieke’ 

(Ghanbari et al., 2011) 

 

(12) 

2
1.0954 0.9695

5.9802
-1.8229791log

3.7315 Re

D
f


−

     
= +            

0  /D  9 x10-2 and 3 x 103  Re  9 x 108 

Beluco - Schettini 

(Beluco & Beatriz Camano 

Schettini, 2016) 

 

(13) ( )
2

1.108

0.966

5.164
1.805log

4.267 Re

D
f


−

  
 = + 

    

 

10-6  /D  0.05 and 2 x 103  Re  108 

Azizi – Homayoon - Hojjati 

(Azizi et al., 2019) 

 

Take note that Jaric et al. (2011)   and Fang, Xu and Zhou (2011) made a mistake in 

citing equation (3). They give the power 0.9 only for the Re. Fang, Xu and Zhou (2011) also 

made mistakes in citing equation (6) as they mistakenly mention the constant 5.74 as 5/74. 

Romeo, Royo and Monzón (2002) made a mistake in citing equation (7). They mistakenly 

mention the constant as 0.27 instead of 0.135. 
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2. Methodology  

 

The data were calculated for the Reynolds number, Re, between 4,000 to 1 x 108. The 

number of nodes calculated as stated in Table 2 means the Reynolds number was calculated 

at 43 points as tabulated in Table 2. While for relative roughness, /d, the range was set 

between 0 to 0.10. The number of nodes calculated as stated in Table 3, which means the 

relative roughness was calculated at 47 points as tabulated in Table 3. The total number of 

nodes will be 2021 as the data then were compared with the Colebrook's equation. 

As some of the equation give their suitability range of Reynolds number and relative 

roughness for the equation, another set of total nodes were calculated based on the range 

given by the equations in Table 1.  

  
Table 2. Number of nodes for Reynolds numbers  

Reynolds number, Re Step Nodes  

4,000-10,000 1,000 7 

20,000-100,000 10,000 9 

200,000-1,000,000 100,000 9 

2,000,000-10,000,000 1,000,000 9 

20,000,000-100,000,000 10,000,000 9 

 Total Nodes 43 

 

Table 3. Number of nodes for relative roughness, /d  

Relative roughness, /d Step Nodes 

0.000000 - 0.000009 0.000001 10 

0.00001 - 0.00009 0.00001 9 

0.0001 - 0.0009 0.0001 9 

0.001 - 0.009 0.001 9 

0.01 - 0.10 0.01 10 

 Total Nodes 47 

 

All the friction factor values calculated from the equation then being compared with 

the Colebrook’s equation. Absolute error, relative percentage error, mean absolute error 

(MAE), mean square error (MSE), and root mean square error (RMSE) are parameters used 

to compare the equation's accuracy. 

Absolute error,ae is given by  

 

, ,ae e i c if f = −         (14) 

 

Where, fe,i is the estimated friction factor calculated by the equations, while fc,i is the 

friction factor from Colebrook's equation. This equation shows the difference between the 

friction factor values calculated by using the equation and Colebrook’s equation. The bigger 

the value indicates that the higher the error of the equation. 

Relative percentage error, is given by, 
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This equation will be useful to see the percentage of error instead of the error itself. 

This parameter shows that when the relative percentage error near zero, the equation is as 

accurate as the Colebrook’s equation. But in this paper, only the maximum value of relative 

percentage error, max will be shown, which is given by 

 

max =           (16) 

 

Another way to see the error is by the average relative percentage error avg. This error 

is good to see the overall performance of the equation. The smaller the percentage error 

means that the equation can fit the Colebrook’s equation at most Reynolds number and 

relative roughness ranges. This measurement will be used as the main factor in deciding the 

equation's quality in this paper. Average relative percentage error is given by  
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Mean absolute error (MAE) is a parameter used to measures the absolute average 

distance between the real data and the predicted data. When the value of MAE is more 

immense, it means that the equation can fit well with the actual data. In this case, the 

Colebrook’s equation. The weakness of MAE is that it fails to punish large errors in 

prediction. MAE is given by equation (18). 
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To evaluate the equation by having a parameter that can punish the large error, mean 

square error (MSE) can be used. But the disadvantage of MSE is that it also squares up the 

units of data as well. So, evaluation with different units is not at all justified. MSE is given by 

equation (19) 
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The weakness of MSE can be improved by using the root mean squared error 

(RMSE). RMSE is given by equation (20), which is the square root of MSE. This metrics 

solves the problem of squaring the units.  
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The statistical analysis was used to compare the equations' accuracy by considering 

all ranges of Reynolds number and relative roughness ranges. It can ensure a better 

understanding of all the single iteration explicit approximations of Colebrook's equations. 

High error at a particular location should also be considered in the analysis.  
 

 

3. Results and Discussion 

 

Tables 4 and 5 show the statistical analysis results. Table 4 is the data without 

considering the validity range of the equations. As in Table 5, only statistical data based on 

the validity range of the equations.   

Table 4, Altshul (2) and Round (7) equations are the worst equations giving the 

highest value of error regardless of the type of statistical measurements.  

Surprisingly, Ghanbari–Farshad–Rieke' equation (11) developed in 2011, not giving 

any better result as the errors still among the highest. The same goes for Eck (4) equation. 

While equations (3), (5), (6), (8), and (10) give moderate errors. These equations can be used 

where the accuracy of the friction factor is not in priority.  

Beluco-Schettini (12) is the best equation giving the lowest error but should be used 

with care at rough and low Reynolds number turbulent region. This equation gives the 

biggest error at Reynold number of 1 x 108 and relative roughness 9 x 10-2. Azizi-Homayoon- 

Hojjati (13) also gives among the lowest value of the error, accept is gives a significant value 

of max. Meanwhile, even though Haaland equation (9) is behind equation (12) and (13), this 

equation gives the lowest value of the max. Meaning that equation (7) is the most consistent 

equation over the Reynolds number and relative roughness ranges. 

Table 4 also can be concluded that most of the equations fail to predict correctly at the 

low Reynolds number turbulent region. It can be seen when most of the equation giving the 

highest absolute error, ae at Reynolds number of 4000. In contrast, equation (2), (7) and (11) 

gives the highest absolute error at high Reynold number, 1 x 108.  

The maximum value of relative percentage error, max, at most of the time, differs 

from the location of highest absolute error, ae located at. No specific relationship was found. 

A similar thing also happens in Table 5. 

When comparing with considering the validity range as in Table 5, equation Altshul 

(2), Round (7), and Eck (4) equations are still the worst equations giving the highest value of 

error regardless of the type of statistical measurements. Ghanbari–Farshad–Rieke' equation 

(11) not showing significant improvement when considering the range's validity. This 

equation still falls under the equation category should be avoided as it's still giving a high 

value of error.  

Not many changes for the best equation as equation (12), (13), and (9) are the 

equation with small error, respectively. While the best equation is (13) followed by (9) and 

(12) if it is seen in view of maximum absolute error,ae. 

Other equations, equation (3), (5), (6), (8), and (10), also give moderate errors, similar 

when validity range was not considered meaning that these equations can be used where the 

accuracy of friction factor is not in priority. For the maximum value of relative percentage 

error, max, the value occurs mostly at the same location as where the highest absolute error, 

ae located at. 

 An interesting point that can be seen from both of the tables is that there are no 

significant changes in the equation's ranking despite the validity range consideration. This 

means that even though the equations were developed for a specific range of Reynold number 

and relative roughness, it can still be used beyond the range suggested with extra precaution. 
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It should be noted only equation (12) was developed to cater the rough surface up to  /d = 9 

x10-2. 
 

 

4. Conclusion 
 

Equations Altshul (2), Round (7) and Eck (4) should be avoided. These three 

equations give a huge error in the calculation. The best equation by comparing all the 

parameters are Beluco-Schettini (12), Azizi-Homayoon- Hojjati (13), and Haaland (9).  

Haaland equation (9) is the most consistent. It gives about a similar value of error regardless 

of the type of statistical error measurements. 
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Table 4. Statistical parameters for observed equations without considering the validity range 

Author 

(year) 

ae,max 

( / D, Re) 

max 

( / D, Re) 

avg 

 

MAE MSE RMSE 

 

Altshul  

(1952) 

0.1866  

(9 x 10-2, 1 x 108) 

194.0611  

(9 x 10-2, 1 x 108) 

63.6476 0.0296010403 0.0030348662 0.0550896198 

Churchill  

(1973) 

0.0027 

(9 x 10-2,4000) 

3.4173  

(2 x 10-2,4000) 

0.5418 

 

0.0001841643 0.0000001529 0.0003909800 

Eck  

(1973) 

0.0035 

(9 x 10-2,4000) 

9.6240 

(0, 1 x 108) 

2.1868 0.0004862699 0.0000005983 0.0007735178 

Jain 

(1976) 

0.0025 

(9 x 10-2,4000) 

3.1865 

(2 x 10-2,4000) 

0.4972 0.0001709186 0.0000001217 0.0003488373 

Swamee – Jain  

(1976)  

0.0027 

(9 x 10-2,4000) 

3.3536 

(2 x 10-2,4000) 

0.5286 0.0001787241 0.0000001452 0.0003811156 

Round  

(1980) 

0.0118 

(9 x 10-2, 1 x 108) 

12.3462 

(9 x 10-2, 1 x 108) 

3.9305 0.0015650430 0.0000099711 0.0031577002 

Pavlov-Romankov-Noskov 

(1981)  

0.0026 

(9 x 10-2,4000) 

3.0467 

(3 x 10-2,4000) 

0.4880 0.0001565994 0.0000001149 0.0003390381 

Haaland  

(1983) 

0.0009 

(9 x 10-2,4000) 

1.4205 

(2 x 10-4, 100000) 

0.4398 0.0001182578 0.0000000265 0.0001627311 

Robaina 

(1992)  

0.0025 

(9 x 10-2,4000) 

3.0108 

(3 x 10-2,4000) 

0.4782 0.0001531830 0.0000001100 0.0003316896 

Ghanbari–Farshad–Rieke’ 

(2011)  

0.0047 

(9 x 10-2, 1 x 108) 

4.8898 

(9 x 10-2, 1 x 108) 

1.0350 0.0005068262 0.0000012815 0.0011320297 

Beluco-Schettini 

(2016) 

0.0007 

(9 x 10-2,4000) 

3.2883 

(0, 1 x 108) 

0.2989 0.0000664139 0.0000000095 0.0000976483 

Azizi-Homayoon- Hojjati 

(2018) 

0.0006 

(9 x 10-2,4000) 

4.9948 

(0, 1 x 108) 

0.3996 0.0000672067 0.0000000104 0.0001020932 
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Table 5. Statistical parameters for observed equations considering the validity range 

Author 

(year) 

ae,max 

( / D, Re) 

max 

( / D, Re) 

avg 

 

MAE MSE RMSE 

 

Altshul  

(1952) 

0.1108  

(5 x 10-2, 1 x 108) 

154.8389  

(5 x 10-2, 1 x 108) 

52.7167 0.0174580756 0.0009293279 0.0304848803 

Churchill  

(1973) 

0.0024 

(5 x 10-2,6000) 

3.4173  

(2 x 10-2,4000) 

0.5512 0.0001641330 0.0000001084 0.0003292725 

Eck  

(1973) 

0.0033 

(5 x 10-2,6000) 

9.6240 

(0, 1 x 108) 

2.3445 0.0004874730 0.0000005780 0.0007602886 

Jain 

(1976) 

0.0019 

(5 x 10-2,7000) 

2.8292 

(2 x 10-2,5000) 

0.5217 0.0001826011 0.0000001118 0.0003343224 

Swamee – Jain  

(1976)  

0.0013 

(1 x 10-2,5000) 

2.8279 

(1 x 10-2,5000) 

0.4982 0.0001228704 0.0000000485 0.0002201385 

Round  

(1980) 

0.0060 

(5 x 10-2, 1 x 108) 

10.1796 

(1 x 10-5, 1 x 108) 

3.2739 0.0008041862 0.0000019722 0.0014043404 

Pavlov-Romankov-Noskov 

(1981)  

0.0022 

(5 x 10-2,4000) 

3.0467 

(3 x 10-2,4000) 

0.4948 0.0001361540 0.0000000740 0.0002719686 

Haaland  

(1983) 

0.0006 

(5 x 10-2,4000) 

1.4205 

(2 x 10-4, 100000) 

0.4498 0.0001057358 0.0000000208 0.0001441034 

Robaina 

(1992)  

0.0013 

(1 x 10-2,4000) 

2.6399 

(1 x 10-2,4000) 

0.4797 0.0001340140 0.0000000541 0.0002326633 

Ghanbari–Farshad–Rieke’ 

(2011)  

0.0021 

(5 x 10-2, 1 x 108) 

2.8962 

(5 x 10-2, 1 x 108) 

0.7563 0.0002213053 0.0000001736 0.0004166961 

Beluco-Schettini 

(2016) 

0.0007 

(9 x 10-2,4000) 

3.2883 

(0, 1 x 108) 

0.2989 0.0000664139 0.0000000072 0.0000847714 

Azizi-Homayoon- Hojjati 

(2018) 

0.0004 

(5 x 10-2,4000) 

3.0598 

(1 x 10-6, 2 x 107) 

0.3878 0.0000619125 0.0000000083 0.0000911957 
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